- 大模型知识蒸馏:技术突破与应用范式重构——从DeepSeek创新看AI基础设施演进路径
大模型服务器厂商
重构人工智能
一、知识蒸馏的技术哲学演进知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术突破,其发展轨迹折射出人工智能从"规模崇拜"向"效率优先"的范式转变。传统知识蒸馏框架主要关注概率分布层面的知识迁移,但DeepSeek等前沿项目展示出更复杂的知识萃取机制。最新研究表明,知识传递已从单纯的输出层模仿,发展到注意力模式迁移(AttentionTransfer)、隐层特征对齐(H
- DeepSeek技术系列之解析DeepSeek蒸馏技术
小叔技研社
AIGC人工智能
大模型落地之痛当前千亿级大模型面临严峻的部署困境:GPT-4级模型的单次推理成本高达0.01美元,而工业场景往往要求响应速度<200ms。传统蒸馏技术虽能压缩模型,但普遍存在精度滑坡超过15%的问题——直到DeepSeek提出多模态渐进框架MPD,一、什么是蒸馏技术蒸馏技术定义模型蒸馏(KnowledgeDistillation)是一种将大型复杂模型(教师模型,比如:DeepSeekR1671B
- 细说向量化知识库
CCSBRIDGE
人工智能人工智能
向量化知识库与RAG:打造智能AI知识检索系统引言在大模型(LLM)迅猛发展的今天,如何让AI获取最新、最准确的信息,成为一个核心问题。大多数LLM依赖其训练数据来回答问题,但它们的知识是静态的,无法实时更新。向量化知识库(VectorizedKnowledgeBase)+检索增强生成(Retrieval-AugmentedGeneration,RAG)提供了一种高效的解决方案。本文将深入解析向量
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- 无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
无缝融入,即刻智能[4]:MaxKB知识库问答系统[进一步深度开发调试,完成基于API对话,基于ollama大模型本地部署等]1.简介MaxKB(MaxKnowledgeBase)是一款基于LLM大语言模型的开源知识库问答系统,1.1产品优势开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;无缝嵌入:支持零编码快速嵌入到第三方业务系
- 大模型量化概述
AI领航者
人工智能ai大模型
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化Quantization)本系列将针对一些常见大模型量化方案(GPTQ、LLM.int8()、Sm
- 超级详细,知识图谱系统的理论详解+部署过程
mosquito_lover1
python开发语言知识图谱
知识图谱系统(KnowledgeGraphSystem)是一种用于表示、存储、查询和推理知识的系统。它通过结构化的方式将现实世界中的实体、概念及其相互关系组织成一个图结构,从而帮助机器理解和处理复杂的知识。知识图谱的核心组成部分实体(Entities):实体是知识图谱中的节点,代表现实世界中的对象或概念。例如,人、地点、组织、事件等。示例:BarackObama、NewYorkCity、Googl
- 知识图谱构建概念、工具、实例调研
熟悉的黑曼巴
知识图谱人工智能
一、知识图谱的概念知识图谱(Knowledgegraph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网络),其最初理想是把基于文本链接的万维网落转化为基于
- Python中LLM的知识图谱构建:动态更新与推理
二进制独立开发
GenAI与Python非纯粹GenAIpython知识图谱开发语言自然语言处理人工智能分布式机器学习
文章目录引言1.知识图谱的基本概念1.1知识图谱的定义1.2知识图谱的构建流程2.利用LLM进行知识抽取2.1实体识别2.2关系抽取2.3属性抽取3.知识融合3.1实体对齐3.2冲突消解4.知识存储5.知识推理5.1规则推理5.2基于LLM的推理6.动态更新6.1增量更新6.2实时更新7.结论引言随着人工智能技术的飞速发展,知识图谱(KnowledgeGraph,KG)作为一种结构化的知识表示方法
- 【CVPR 2021】Knowledge Review:知识蒸馏新解法
BIT可达鸭
深度学习人工智能计算机视觉模型压缩知识蒸馏
【CVPR2021】KnowledgeReview:知识蒸馏新解法论文地址:主要问题:主要思路:符号假设:具体实现:实验结果:关注我的公众号:联系作者:论文地址:https://jiaya.me/papers/kdreview_cvpr21.pdf主要问题:目前大部分关于KD的方法都是基于相同层或者相同Block之间的知识迁移。但是Teacher往往深层表示抽象的语义信息,底层表示简单的知识的信息
- 自动驾驶感知、端到端论文集(2024-10-11)
自动驾驶小学生
毫米波雷达摄像头多传感器融合
文章目录1.Detection2.Segmentation(Map)3.DepthEstimation4.HighResolution5.End-to-EndAutonomousDriving1.DetectionLabelDistill:Label-guidedCross-modalKnowledgeDistillationforCamera-based3DObjectDetectionECCV
- Windows Docker Desktop部署MaxKB详细教程
Roc-xb
docker容器运维MaxKB
MaxKB(MaxKnowledgeBase)是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库问答系统,旨在帮助企业、教育机构及研究组织高效管理知识并提供智能问答服务。一、前期准备工作首先,你需要再你的Windows电脑上安装DockerDesktop。本章教程,不介绍如何安装Docker。二、搜索镜像dockersearchmaxkb
- Dify rerank model is deprecated in knowledge base
人工智能
这是可优化的细节。这里过时的提示倾向于说工作空间有一个默认的重新排名模型,但在执行一些前端逻辑后我们发现当前的重新排名模型是空的或未定义的,因此这个当前模型已过时。但这里默认模型实际上是一个所有字段都是空字符串的模型结构:{"provider":"","model":""}在这种情况下,缺省模型实际上是空的且无效。因此,在这里我们不会显示过时标志,而是更有可能告诉用户为工作区配置至少一个重排序模型
- 使用Python实现深度学习模型:知识蒸馏与模型压缩
Echo_Wish
Python笔记从零开始学Python人工智能Python算法python深度学习开发语言
在深度学习领域,模型的大小和计算复杂度常常是一个挑战。知识蒸馏(KnowledgeDistillation)和模型压缩(ModelCompression)是两种有效的技术,可以在保持模型性能的同时减少模型的大小和计算需求。本文将详细介绍如何使用Python实现这两种技术。目录引言知识蒸馏概述模型压缩概述实现步骤数据准备教师模型训练学生模型训练(知识蒸馏)模型压缩代码实现结论1.引言在实际应用中,深
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- 网工必备知识点(Essential Knowledge Points for Internet Workers)
Linux运维老纪
无所畏惧走进计算机网络世界网络服务器运维开发容器云计算
网工必备知识点网络工程师是信息技术领域中不可或缺的职业,负责设计、实施和管理网络系统,确保企业内外部的通信安全、流畅。要成为一名合格的网络工程师,掌握基础知识是必不可少的。一、交换机是一种网络设备,通过学习MAC地址来决定数据包的传输路径,是现代网络中实现高效数据交换的关键设备。二、路由器是一种网络设备,用于在不同网络间路由数据包,实现网络间的通信。它工作在网络层,通过路由表寻址转发数据包。三、防
- 模型轻量化
莱茶荼菜
人工智能学习
影响神经网络推理速度主要有4个因素:FLOPs、MAC、计算并行度、硬件平台架构与特性(算力、GPU内存带宽)模型压缩工业界主流的模型压缩方法有:知识蒸馏(KnowledgeDistillation,KD)轻量化模型架构(也叫紧凑的模型设计)、剪枝(Pruning)、量化(Quantization)。模型剪枝(ModelPruning):模型剪枝通过删除冗余的连接或参数来减小模型的大小。这可以通过
- 详解Redis中lua脚本和事务
优人ovo
redislua数据库
Inlearningknowledge,oneshouldbegoodatthinking,thinking,andthinkingagain.—-AlbertEinstein引言Lua脚本的原子性和事务的ACID特性想必大家都很熟悉,本篇文章将从性能表现和原理帮助我们快速理解他们基本概念1.RedisLua脚本从2.6版本起,Redis开始支持Lua脚本。开发者能够将一系列Redis命令封装于一
- 一文读懂DeepSeek蒸馏技术,AI进阶的秘密武器
老黄浅谈质量
人工智能大数据
一文读懂DeepSeek蒸馏技术,AI进阶的秘密武器在AI领域蓬勃发展的当下,模型的性能与效率成为了研究者们关注的焦点。DeepSeek作为其中的佼佼者,其蒸馏技术为提升模型表现开辟了新路径。今天,就让我们深入探究DeepSeek蒸馏技术的奥秘。一、什么是蒸馏技术蒸馏技术,英文名为KnowledgeDistillation,简称KD,最早是由GeoffreyHinton、OriolVinyals和
- 稻盛和夫如何描述能力
爱学习的大牛123
闲谈能力公式
1.能力的三要素稻盛和夫认为,能力由以下三个核心要素组成:知识(Knowledge):掌握的专业知识、技术技能和行业经验。技能(Skill):将知识应用于实际工作的能力,包括解决问题的能力、执行力和创新能力。态度(Attitude):对待工作的心态和价值观,包括责任感、热情、毅力和团队精神。2.能力的公式稻盛和夫提出了一个著名的公式来描述能力的本质:能力=知识×技能×态度```-**知识**和**
- 基于对比增强的超声视频的域知识为乳腺癌诊断提供了深度学习
Philo`
医学图像分割论文阅读深度学习人工智能论文阅读图像处理pytorch机器学习
DomainKnowledgePoweredDeepLearningforBreastCancerDiagnosisBasedonContrast-EnhancedUltrasoundVideos期刊分析摘要引言相关工作乳腺癌中的CAD基于乳房CEU的CAD方法整体框架原始C3D骨干领域知识指导的时间注意模块(DKG-TMA)域知识引导的通道注意模块数据集和实验乳腺-对比增强超声数据集实验设置实验
- springboot中使用AOP手动处理事务回滚
yzhSWJ
springbootjava后端
我有一个del的方法,当移除某个对象的时候,我需要相应的移除n个数据,这种情况下,除非其中某一个抛出了异常,事务才会回滚,但是我会在处理第n个数据的情况下,返回false,也需要让这个事务回滚,我该怎么处理呢@Override@TransactionalpublicResultdel(Longid){AiKnowledgeBaseknowledgeBase=getById(id);if(knowl
- DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning论文解读
tangjunjun-owen
paper解读DeepSeekR1DeepSeekzero大语言模型
文章目录前言一、摘要二、引言三、贡献1.贡献后训练:基础模型的大规模强化学习蒸馏:较小的模型也可以很强大2.评估结果概览reasoningtasksknowledgeohters四、方法1.Overview2.DeepSeek-R1-Zero:ReinforcementLearningontheBaseModelReinforcementLearningAlgorithm(GRPO重点)Rewar
- 知识库升级新思路:用生成式AI打造智能知识助手
在当今信息爆炸的时代,企业和组织面临着海量数据的处理和管理挑战。知识库管理系统(KnowledgeBaseManagementSystem,KBMS)作为一种有效的信息管理工具,帮助企业存储、组织和检索知识。然而,传统的知识库系统往往依赖于人工输入和维护,效率低下且难以应对快速变化的信息需求。生成式AI,特别是像ChatGPT这样的语言模型,为知识库管理系统带来了新的可能性。一、知识库管理系统的现
- 深度解析 DeepSeek 的蒸馏技术
海持Alvin
AI技术应用AI技术解决方案与产业研报deepseek人工智能大模型ai
转自微信公众号,https://mp.weixin.qq.com/s/pvx4nYeBcfmMVRBCdvP9Yw如有侵权,请联系删除。DeepSeek蒸馏技术概述1.1蒸馏技术定义与原理图片模型蒸馏(KnowledgeDistillation)是一种将大型复杂模型(教师模型)的知识迁移到小型高效模型(学生模型)的技术。其核心目标是在保持模型性能的同时,显著降低模型的计算复杂度和存储需求,使其更适
- LangGraph入门教程
xnuscd
python
LangGraph教程:在LangChain中集成知识图谱目录简介前置条件环境配置安装必要的库创建知识图谱集成LangChain与知识图谱定义工具构建Agent类自定义模板和输出解析运行示例扩展与优化常见问题与故障排除总结简介LangGraph是一个结合LangChain与知识图谱(KnowledgeGraph)的应用,旨在通过结构化的知识库增强语言模型的理解和响应能力。通过将知识图谱与LangC
- Unifying Large Language Models and Knowledge Graphs: A Roadmap综述笔记-入门-知识图谱KG-大模型LLM
笨cc
KG读论文语言模型知识图谱笔记
论文信息标题:UnifyingLargeLanguageModelsandKnowledgeGraphs:ARoadmap作者:ShiruiPan摘要LLMs,例如chatGPT和GPT4,由于其涌现能力和泛化性,对自然语言理解和人工智能领域产生了新的冲击。然而,LLMs是一个黑箱模型,往往缺乏捕获和获得事实知识。相反,知识图谱,例如维基百科等,是有结构模型。存储着丰富的事实知识。KGs可以通过提
- KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS
UnknownBody
LLMDaily语言模型人工智能
本文是LLM系列文章,针对《KRAIL:AKnowledge-DrivenFrameworkforBaseHumanReliabilityAnalysisIntegratingIDHEASandLargeLanguageModels》的翻译。KRAIL:集成IDHEAS和大型语言模型的基础人员可靠性分析的知识驱动框架摘要1引言2文献综述3方法4实验结果5结论和未来工作摘要人的可靠性分析(HRA)对
- DeepSeek R1技术报告关键解析(5/10):知识蒸馏:如何让小模型也能具备强推理能力?
董董灿是个攻城狮
人工智能计算机视觉CNN
1.什么是知识蒸馏?知识蒸馏(KnowledgeDistillation)是一种让小模型从大模型学习的技术,类似于一位资深老师将自己的知识浓缩后,传授给学生。大模型通常计算量大、推理速度慢,而小模型虽然计算资源消耗更少,但推理能力往往不如大模型。通过知识蒸馏,小模型可以继承大模型的推理能力,同时保持较低的计算成本。在DeepSeek-R1训练过程中,研究人员通过知识蒸馏,让较小的模型也能具备较强的
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(