\(设f(x)是[a,b]上连续函数,则f(x)在[a,b]上必然一致连续\\\)
\(证明:因为f(x)在[a,b]上连续,所以任取[a,b]内一点x_{0},任给\frac{\epsilon}{2}>0\)
\(\exists\delta(x_{0})>0,对于任何x\in[a,b],且异于x_{0},若|x-x_{0}|<\delta,有|f(x)-f(x_{0})|<\epsilon\)
\(因为这个\delta与x_{0}的选取有关,对于同一个\epsilon,不同位置的点,其对应的\delta不同\)
\(设frac{\delta_{x}}{2}对应的邻域为U(x,frac{delta(x)}{2})\)
\(设[a,b]上所有点的邻域集合为I={U(x,\frac{\delta}{2}),x\in[a,b]}\)
\(则I构成对区间[a,b]的完全开覆盖\)
\(因为[a,b]是闭区间,所以,根据有限开覆盖原理,在I内,存在有限个开覆盖,可以完全覆盖[a,b]\)
\(设这个有限覆盖组成的集合为M=\{U(x_{k},\frac{\delta}{2}),k \in N^+,x_{k}\in[a,b]\}\)
\(\forall x_{1},x_{2}\in[a,b],设|x_{1}-x_{2}|<\frac{\delta}{2}\)
\(因为M完全覆盖[a,b],所以x_{1}必属于某点x_{k}的邻域U(x_{k},\frac{delta}{2})\cap[a,b],\)
\(因此,|x_{1}-x_{k}|<\frac{\delta}{2}\)
\(|x_{2}-x_{k}|<|x_{2}-x_{1}|+|x_{1}-x_{l}|=\frac{\delta}{2}+\frac{\delta}{2}=\delta\)
\(因为x_{1},x_{2}均在x_{k}的邻域U(x_{k},\delta)内,由函数的连续性,可知|f(x_{1})-f(x_{k})|<\frac{\epsilon}{2},|f(x_{2})-f(x_{k})|<\frac{\epsilon}{2}\)
\(可得:|f(x_{1})-f(x_{2})|<|f(x_{1})-f(x_{k})|+|f_x{2}-f_x{k}|=\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon\)
\(即\forall\epsilon>0,存在\frac{\delta}{2},若x_{1},x_{2}\in [a,b],且|x_{1}-x_{2}|<\frac{\delta}{2}\)
\(则\quad |f(x_{1})-f(x_{2})|<\epsilon\)
证毕
\(说明,只要给定\epsilon,则对应的\delta即确定,任何[a,b]内距离小于\delta的两点,其函数差必然<\epsilon\)
\(与这两点位置无关,仅与两点距离有关\)
\(只有闭区间才能使用有限覆盖\)
下图是知乎网友提供的课本证明https://www.zhihu.com/question/56393706
其中的k,应为R