查找---二分查找的三种实现和插值查找

二分查找

  • 递归实现
  • 区间为左闭右闭
  • 区间为左闭右开
public class BinarySearchTest {
    public static void main(String[] args) {
        int[] arr = {1,2,3,4,5};
        int index1 = binarySearch1(arr, 5);
        System.out.println(index1);

        int index2 = binarySearch2(arr, 5);
        System.out.println(index2);

        int index3 = binarySearchRecursion(arr, 5);
        System.out.println(index3);
    }

    //递归解法
    public static int binarySearchRecursion(int[] arr, int target) {
        return binarySearch3(arr, 0, arr.length - 1, target);
    }

    public static int binarySearch3(int[] arr, int left, int right, int target) {
        if(left > right) return -1;

        int mid = left + (right - left) / 2;

        if(arr[mid] > target) {
            return binarySearch3(arr, left, mid - 1, target);
        }else if(arr[mid] < target) {
            return binarySearch3(arr, mid + 1, right, target);
        }else {
            return mid;
        }
    }

    //区间:左闭右闭
    public static int binarySearch1(int[] arr, int target) {
        int left = 0;
        int right = arr.length - 1;

        while(left <= right) {
            int mid = left + (right - left) / 2;
            if(arr[mid] == target) {
                return mid;
            } else if (arr[mid] < target) {
                left = mid + 1;
            }else{
                right = mid - 1;
            }
        }
        return -1;
    }

    //区间:左闭右开
    public static int binarySearch2(int[] arr, int target) {
        int left = 0;
        int right = arr.length;

        while(left < right) {
            int mid = left + (right - left) / 2;
            if(target < arr[mid]) {
                right = mid;
            }else if(target > arr[mid]) {
                left = mid + 1;
            }else{
                return mid;
            }
        }

        return -1;
    }
}

扩展题

数组中有多个相同的目标值,把这些值的下标找出来,如{1,2,2,3,4} 目标值是2,则返回{1,2}

import java.util.ArrayList;
import java.util.List;

public class BinarySearchExtension {
    public static void main(String[] args) {
        int[] arr = {1,2,2,3,4,4,4};
        List<Integer> result = binarySearchRecursion(arr, 3);
        System.out.println(result);
    }
    
    public static List binarySearchRecursion(int[] arr, int target) {
        return binarySearch1(arr, 0, arr.length - 1, target);
    }

    public static List binarySearch1(int[] arr, int left, int right, int target) {
        if(left > right) {
            return new ArrayList<>();
        }

        int mid = left + (right - left) / 2;
        if(arr[mid] > target) {
            return binarySearch1(arr, left, mid - 1, target);
        }else if(arr[mid] < target) {
            return binarySearch1(arr, mid + 1, right, target);
        }else{
            int temp1 = mid - 1;
            int temp2 = mid + 1;
            int arrLen = arr.length;
            List<Integer> result = new ArrayList<>();
            //扫描mid左边的值
            while(temp1 >= 0 && arr[temp1] == target) {
                result.add(temp1);
                temp1--;
            }
            result.add(mid);
            //扫描mid右边的值
            while(temp2 < arrLen && arr[temp2] == target) {
                result.add(temp2);
                temp2++;
            }
            return result;
        }
    }
}

时间复杂度

每次查找,元素个数减小一半,即n,n/2,n/4,…, n/2^ k,k就是循环的次数,取n/2^ k=1,即k=logn(以2为底),因此时间复杂度为O(logN)

插值查找

二分查找中取中间元素mid= left + (right - left)/ 2,设想这样一个例子:数据为1到1000,查找元素1,那么将会进行好几次循环才能找到1。于是有个改进的算法即插值算法:mid=left + (right - left) * (target -arr[left]) / (arr[right] - arr[left]),target是要找到目标值。
对于数据量比较大,关键字分布比较均匀的查找来说,采用插值查找速度较快。关键字分布不均匀的情况下,该方法不一定比二分查找效率高。

你可能感兴趣的:(数据结构和算法)