CvSVM svm;// = CvSVM();//新建一个SVM
CvSVMParams param;//这里是参数
CvTermCriteria criteria;
criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
/*
SVM种类:CvSVM::C_SVC
Kernel的种类:CvSVM::RBF
degree:10.0(此次不使用)
gamma:8.0
coef0:1.0(此次不使用)
C:10.0
nu:0.5(此次不使用)
p:0.1(此次不使用)
然后对训练数据正规化处理,并放在CvMat型的数组里。
*/
//☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆
svm.train( data_mat, res_mat, NULL, NULL, param );//训练啦
//☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆
svm.save( "SVM_DATA.xml" );
1.首先声明一个CvSVM类
2.OpenCV学习–cvTermCriteria介绍
CvTermCriteria
迭代算法的终止准则
#define CV_TERMCRIT_ITER 1
#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER
#define CV_TERMCRIT_EPS 2
typedef struct CvTermCriteria
{
int type; /* CV_TERMCRIT_ITER 和CV_TERMCRIT_EPS二值之一,或者二者的组合 */
int max_iter; /* 最大迭代次数 */
double epsilon; /* 结果的精确性 */
}
CvTermCriteria;
/* 构造函数 */
inline CvTermCriteria cvTermCriteria( int type, int max_iter, double epsilon );
/* 在满足max_iter和epsilon的条件下检查终止准则并将其转换使得type=CV_TERMCRIT_ITER+CV_TERMCRIT_EPS */
CvTermCriteria cvCheckTermCriteria( CvTermCriteria criteria,
double default_eps,
int default_max_iters );
C++: CvSVMParams:: CvSVMParams (int svm_type ,
int kernel_type ,
double degree ,
double gamma ,
double coef0 ,
double Cvalue ,
double nu ,
double p ,
CvMat* class_weights ,
CvTermCriteria term_crit
)
4.样本train
设置参数后就可以用CvSVM.train()进行训练了,下面是train的原型
C++: bool CvSVM:: train (const Mat& trainData ,
const Mat& responses ,
const Mat& varIdx=Mat() ,
const Mat& sampleIdx=Mat() ,
CvSVMParams params=CvSVMParams()
)
我在用 train完成 训练预测时出现了过拟合的情况,即对于训练集的数据有很好的预测结果,但对不在训练集的测试集预测值都一样(我在网上看到很多网友也遇到这个问题)。于是我开始调整参数,调了半天也没个好结果
后面我发现其实opencv中SVM类是提供了优化参数值功能的,瞬间感觉世界美好了。下面讲讲具体的做法。
要让svm自动优化参数,那么训练时就不能再用train函数了,而应该用train_auto函数。下面是train_auto的函数原型
C++: bool CvSVM:: train_auto (const Mat & trainData ,
const Mat & responses ,
const Mat & varIdx ,
const Mat & sampleIdx ,
CvSVMParams params ,
int k_fold=10 ,
CvParamGrid Cgrid=CvSVM::get_default_grid(CvSVM::C) ,
CvParamGrid gammaGrid=CvSVM::get_default_grid(CvSVM::GAMMA) ,
CvParamGrid pGrid=CvSVM::get_default_grid(CvSVM::P) ,
CvParamGrid nuGrid=CvSVM::get_default_grid(CvSVM::NU) ,
CvParamGrid coeffGrid=CvSVM::get_default_grid(CvSVM::COEF) ,
CvParamGrid degreeGrid=CvSVM::get_default_grid(CvSVM::DEGREE) ,
bool balanced=false
)
自动训练函数的参数注释(13个)
自动训练函数的使用说明
CvSVMParams param;
param.svm_type = CvSVM::EPS_SVR;
param.kernel_type = CvSVM::RBF;
param.C = 1; //给参数赋初始值
param.p = 5e-3; //给参数赋初始值
param.gamma = 0.01; //给参数赋初始值
param.term_crit = cvTermCriteria(CV_TERMCRIT_EPS, 100, 5e-3);
//对不用的参数step设为0
CvParamGrid nuGrid = CvParamGrid(1,1,0.0);
CvParamGrid coeffGrid = CvParamGrid(1,1,0.0);
CvParamGrid degreeGrid = CvParamGrid(1,1,0.0);
CvSVM regressor;
regressor.train_auto(PCA_training,tr_label,NULL,NULL,param,
10,
regressor.get_default_grid(CvSVM::C),
regressor.get_default_grid(CvSVM::GAMMA),
regressor.get_default_grid(CvSVM::P),
nuGrid,
coeffGrid,
degreeGrid);
CvSVMParams params_re = regressor.get_params();
regressor.save("training_srv.xml");
float C = params_re.C;
float P = params_re.p;
float gamma = params_re.gamma;
printf("\nParms: C = %f, P = %f,gamma = %f \n",C,P,gamma);
======================================================
用OpenCV使用SVM算法的大概流程是
1)设置训练样本集
需要两组数据,一组是数据的类别,一组是数据的向量信息。
2)设置SVM参数
利用CvSVMParams类实现类中的成员变量svm_type表示SVM类型:
CvSVM::C_SVC C-SVC
CvSVM::NU_SVC v-SVC
CvSVM::ONE_CLASS 一类SVM
CvSVM::EPS_SVR e-SVR
CvSVM::NU_SVR v-SVR
成员变量kernel_type表示核函数的类型:
CvSVM::LINEAR 线性:u‘v
CvSVM::POLY 多项式:(r*u'v + coef0)^degree
CvSVM::RBF RBF函数:exp(-r|u-v|^2)
CvSVM::SIGMOID sigmoid函数:tanh(r*u'v + coef0)
成员变量degree针对多项式核函数degree的设置
gamma针对多项式/rbf/sigmoid核函数的设置
coef0针对多项式/sigmoid核函数的设置
Cvalue为损失函数
在C-SVC、e-SVR、v-SVR中有效,nu设置v-SVC、一类SVM和v-SVR参数
p为设置e-SVR中损失函数的值
class_weightsC_SVC的权重
term_crit为SVM训练过程的终止条件。
其中默认值degree = 0,gamma = 1,coef0 = 0,Cvalue = 1,nu = 0,p = 0,class_weights = 0
3)训练SVM
调用CvSVM::train函数建立SVM模型,第一个参数为训练数据,第二个参数为分类结果,最后一个参数即CvSVMParams
4)用这个SVM进行分类
调用函数CvSVM::predict实现分类
CvSVM::predict用来预测一个新样本的响应值,在分类器问题中,这个函数返回类别编号,在回归问题中,返回函数值。
另外:
对输入图片进行行人检测时由于图片的大小不一样,所以要用到多尺度检测。这里是用hog类的方法detectMultiScale。参数解释如下:
HOGDescriptor::detectMultiScale(const GpuMat& img, vector
myHOG.detectMultiScale(src, found, 0, Size(8,8), Size(32,32), 1.05, 2);//对图片进行多尺度行人检测
该函数表示对输入的图片img进行多尺度行人检测 img为输入待检测的图片;found_locations为检测到目标区域列表;参数3为程序内部计算为行人目标的阈值,也就是检测到的特征到SVM分类超平面的距离;参数4为滑动窗口每次移动的距离。它必须是块移动的整数倍;参数5为图像扩充的大小;参数6为比例系数,即滑动窗口每次增加的比例;参数7为组阈值,即校正系数,当一个目标被多个窗口检测出来时,该参数此时就起了调节作用,为0时表示不起调节作用。
除了分类,也可以得到SVM的支持向量,调用函数CvSVM::get_support_vector_count获得支持向量的个数,
CvSVM::get_support_vector获得对应的索引编号的支持向量。
6)获取决策函数中的alpha向量 CvSVM::get_alpha_vector()
7)获取偏移量
CvSVM::get_rho
——结论——
▪决策函数为【rho-w*x】,大于0表示正样本,小于0表示负样本
其中w=alpha*sv;
alpha中存放每个支持向量的权重,sv表示每个支持向量
w为加权后的支持向量