- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 机器学习在医学中的应用
听忆.
机器学习人工智能
边走、边悟迟早会好机器学习在医学中的应用是一个广泛且复杂的领域,涵盖了从基础研究到临床应用的多个方面。以下是一个万字总结的结构性思路,分章节深入探讨不同应用场景、技术方法、挑战与未来展望。1.引言背景与发展:介绍医学领域的数字化转型以及机器学习的兴起,探讨其在医学中的潜力。机器学习的基本概念:简要介绍机器学习的基本原理、分类(监督学习、非监督学习、强化学习等)和常用算法(如神经网络、支持向量机、随
- 每天一个数据分析题(四百八十七)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 每天一个数据分析题(四百八十八)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 机器学习基础(一)理解机器学习的本质
昊昊该干饭了
人工智能python机器学习人工智能python
导读:在本文中,将深入探索机器学习的根本原理,包括基本概念、分类及如何通过构建预测模型来应用这些理论。目录机器学习机器学习概念相关概念机器学习根本:模型数据的语言:特征与标签训练与测试:模型评估机器学习的分类监督学习:有指导的学习过程非监督学习:自我探索的过程强化学习:通过试错学习构建与分析鸢尾花数据模型鸢尾花数据集简介加载数据集创建和训练模型进行预测与评估模型机器学习机器学习概念机器学习是人工智
- 机器学习---强化学习
三月七꧁ ꧂
机器学习机器学习人工智能
1.什么是强化学习在连接主义学习中,在学习的方式有三种:非监督学习(unsupervisedlearning)、监督学习(supervisedleaning)和强化学习。监督学习也称为有导师的学习,需要外界存在一个“教师”对给定输入提供应有的输出结果,学习的目的是减少系统产生的实际输出和预期输出之间的误差,所产生的误差反馈给系统来指导学习。非监督学习也称为无导师的学习。它是指系统不存在外部教师指导
- 机器学习之监督学习和非监督学习
华农DrLai
机器学习学习人工智能深度学习
监督学习(SupervisedLearning)监督学习是一种学习方式,其中模型从标记的训练数据中学习。这意味着每个训练样本都是由输入向量和相应的目标输出(也称为标签)组成的。模型的任务是学习输入到输出的映射函数,以便当提供新的、未见过的数据时,模型能够预测出正确的输出。例子:邮件分类:根据邮件内容将邮件自动分类为“垃圾邮件或“非垃圾邮件”。这里,邮件内容是输入,而“垃圾邮件“或“非垃圾邮件”的非
- 如何入行人工智能
科联学妹
人工智能
要成功入行人工智能领域,一个坚实的基础是不可或缺的。这个基础包括数学、Python编程以及数据结构与算法的深厚理解。这些知识为深入探索机器学习、深度学习和自然语言处理(NLP)等更高级领域铺平了道路。机器学习作为人工智能的核心,其基本理论涵盖了机器学习的定义、不同类型(如监督学习、非监督学习、强化学习)以及它们的主要应用场景。对于监督学习,我们需要熟悉线性回归、逻辑回归、决策树、随机森林和支持向量
- 【吴恩达机器学习】第八周—聚类降维Kmeans算法
Sunflow007
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
- 基于WGAN-GP方法的时间序列信号生成(以轴承振动信号为例)
哥廷根数学学派
信号处理图像处理故障诊断算法人工智能深度优先python
生成对抗网络GAN作为非监督学习,由生成器和判别器两个神经网络构成。生成器从潜在空间中随机取样作为输入,试图生成与真实样本数据相仿的数据。判别器的输入则为真实样本数据或生成器生成数据,进而判断其输入是真实数据还是生成数据。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。WGAN作为GAN的改进模型,使用Wasserstein距离来替代JS散度作为优化目标,从
- 聚类(Clustering)理论
时间邮递员
聚类人工智能机器学习
一、无监督学习介绍在这小节中,我将开始介绍聚类算法,这是我们学习的第一个非监督学习算法,我们将要让计算机学习无标签数据而不是此前的标签数据。那么什么是非监督学习呢?在学习机器学习知识的开始我曾简单地介绍过非监督学习,然而我还是有必要将其与监督学习做一下比较。在一个典型的监督学习中我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,我们有一系列标签并且我们需要据此拟合一个假设
- About_Machine_Learning_in_action
煮茶温酒曲终人散
#监督学习######仅仅是个人理解对于机器学习,分为监督学习和非监督学习,今天的监督学习仅仅作为自己的学习记录一个数据,有他的类别,一群数据都有他们的类别,而新加入的数据却没有类别,那么监督学习就是以已知分类去区分未知分类没有例子,这就是感悟
- 【吴恩达·机器学习】第一章:机器学习绪论:监督学习和非监督学习
是瑶瑶子啦
机器学习学习人工智能监督学习非监督学习
文章目录0、声明1、前言:Part1/Week1学习总结2、机器学习绪论2.1:什么是机器学习2.2:监督学习2.2.1:回归2.2.2:分类2.2.3:回归和分类对比:2.3:非监督学习2.3.1:聚类博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@是瑶瑶子啦每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老
- 聚类(Clustering)
清☆茶
聚类数据挖掘机器学习
1.无监督学习:简介在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法。问题:聚类算法一般用来做什么呢?比如市
- 《深度学习之美》读书笔记章三
wenju_song
这一篇文章介绍第三章机器学习的分类。第三章“机器学习”三重门,“中庸之道”趋若人机器学习分为三大类:监督学习,非监督学习,半监督学习3.1监督学习3.1.1感性认知监督学习监督学习:从有标签的训练数据中学习模型,然后给定某个新数组,利用模型预测它的标签。这里的标签可以理解为事物的分类。3.1.2监督学习的形式化描述在监督学习中,根据目标预测变量的类型不同,可以分为回归分析和分类学习。回归分析包括:
- Python入门之机器学习(非常详细)篇幅拉满,一般人看不完!
码农必胜客
Python零基础入门python机器学习开发语言
一、什么是机器学习什么是机器学习?机器学习其实就是想让计算机像人一样思考而研发出的计算机理论,目前常用的机器学习有以下几种算法:监督学习supervisedlearning;非监督学习unsupervisedlearning;半监督学习semi-supervisedlearning;强化学习reinforcementlearning;监督学习是不断向计算机提供数据(特征),并告诉计算机对应的值(标
- 机器学习之卷积神经网络
WEL测试
人工智能机器学习cnn人工智能
卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此又称为SIANN。卷积神经网络仿照生物的视知觉机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化特征进行学习。卷积神经网络的结构包括:输入层、卷积层、池化层、全
- 机器学习:李航 统计学习方法 笔记
lealzhan
机器学习算法
詹令
[email protected]待整理统计学习方法监督学习非监督学习半监督学习强化学习监督学习方法生成方法GenerativeApproach:P(Y∣X)=P(X,Y)P(X)P(Y|X)=\frac{P(X,Y)}{P(X)}P(Y∣X)=P(X)P(X,Y)朴素贝叶斯模型隐式马尔科夫模型判别方法DiscrimitiveApproach:k近邻/knn线性分类模型感知机
- 【非监督学习 02】高斯混合模型
一碗姜汤
机器学习机器学习人工智能
高斯混合模型(GuassianMixedModel,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。图5.6是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图中所有的椭圆即为高斯分布的二倍标准差所对应的椭圆。直观来说,图中的数据明显分为两簇,因此只用
- 梯度下降法(Gradient Descent)
Debroon
#机器学习#凸优化
梯度下降法(GradientDescent)梯度下降法批量梯度下降法随机梯度下降法scikit-learn中的随机梯度下降法小批量梯度下降法梯度下降法梯度下降法,不是一个机器学习算法(既不是再做监督学习,也不是非监督学习,分类、回归问题都解决不了),是一种基于搜索的最优化方法。梯度下降法作用是,最小化一个损失函数;而如果我们要最大化一个效用函数,应该使用梯度上升法。这个二维平面描述了,当我们定义了
- 基于贝叶斯决策理论的分类器
CHENG-HQ
机器学习机器学习贝叶斯分类器参数估计
基于贝叶斯决策理论的分类器基于贝叶斯决策理论的分类器贝叶斯决策理论1如何衡量分类好坏参数估计1极大似然估计2最大后验概率估计3最大熵估计4非参数估计贝叶斯分类器在现实中的应用1垃圾邮件分类2贝叶斯网络参考文献首先,我们知道机器学习分为监督学习和非监督学习两大类。在监督学习中,我们主要面对的是拟合问题(regression)和分类问题(classification)。在本节中,我们先来了解一下如何使
- Week9
kidling_G
第9周十五、异常检测(AnomalyDetection)15.1问题的动机参考文档:15-1-ProblemMotivation(8min).mkv在接下来的一系列视频中,我将向大家介绍异常检测(Anomalydetection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。什么是异常检测呢?为了解释这个
- day4--GPT/GPT2.0
呆呆有库
深度学习transformer神经网络
目录GPTGPT训练的两个阶段:GPT的架构图:自注意力机制:GPT-2GPT-2的架构图:GPTGPT训练的两个阶段:第一个阶段是Pre-training阶段,主要利用大型语料库完成非监督学习;第二阶段是Fine-tuning,针对特定任务在相应数据集中进行监督学习,通过Fine-tuning技术来适配具体任务。GPT的架构图:自注意力机制:下图中,每一层的所有Trm属于一个自左向右的单向tra
- 【Apriori算法Java实现版】聚类算法与关联分析
张照博
正文之前当初毕设的时候准备用这个算法来着,不过后来为了给自己减少工作量(俗称偷懒),就没搞了,没想到这两天看一篇论文看到了这个,重新捡起来学一下。对于我这种算法底子不是很好的来说。。只能代码实现来感受下了。。正文基本概念关联分析是一种在大规模数据集中寻找有趣关系的非监督学习算法。这些关系可以有两种形式:频繁项集或者关联规则。频繁项集(frequentitemsets)是经常出现在一块的物品的集合,
- 机器学习一些概念
satadriver
机器学习机器学习人工智能
LDA:LDA最大化类间距离,最小化类内距离,使得投影后的不同类别的样本分的更开,属于监督学习。PCA:PCA最小重构误差,使得投影后的值和原来的值尽量接近,属于非监督学习。SVM:最大间隔的优化模型CART算法ID3算法GINI算法C4.5算法Novikoff定理:模糊C均值算法:J(U,V)=∑i=1n∑j=1kuijmdij2∑j=1kuij=1,uij∈[0,1]J(U,V)=\sum_{
- 机械学习 - 基础概念 - scikit-learn - 数据预处理 - 1
沐 修
机器学习scikit-learnpython机器学习
目录安装scikit-learn术语理解1.特征(feature)和样本(sample/demo)的区别?2.关于模型的概念一、机械学习概念1.监督学习总结:2.非监督学习总结:3.强化学习总结:三种学习的特点总结scikit-learn说明二、机械学习的基本实操逻辑1.采集数据2.数据预处理(Preprocessing)预处理算法:归一化:1.normalize()3.数据降维处理(Dimens
- 监督学习和非监督学习有什么区别?监督学习又可分为哪两类任务?
北辰Charih
学习机器学习python
监督学习和非监督学习是机器学习的两种主要类型,它们的区别在于训练数据的标签是否已知。监督学习:训练数据包含输入特征和对应的标签或输出值。模型通过学习输入特征和对应的输出值之间的关系,从而预测新的输入数据的输出值。监督学习的目标是寻找一个函数,将输入映射到输出。监督学习是一种通过使用带有标签的训练数据来训练模型的方法。在监督学习中,模型通过学习输入特征和对应的输出标签之间的关系来进行预测。监督学习的
- 单细胞转录组数据分析课件||7. Clustering of scRNA-seq data
周运来就是我
单细胞分析的一个亮点就是可以找出细胞的异质性,也就是可以对细胞进行分群,找出有意思的亚群。所以这节课很重要:数据聚类。数据质控:选择高质量的数据进行聚类特征选择什么叫聚类为什么说聚类是非监督学习如何面对不同聚类算法得到的不同的结果介绍了几种常见的聚类算法ThislecturebyAhmedMahfouz(LeidenComputationalBiologyCenter,LUMC,Netherlan
- 1 监督学习-概述
奋斗的喵儿
1.1统计学习统计学习包括监督学习、非监督学习、半监督学习及强化学习。步骤:1)得到一个有限的训练数据集合2)确定包含所有可能的模型的假设空间,即学习模型的集合3)确定模型选择的准则,即学习的策略4)实现求解最优模型的算法,即学习的算法5)通过学习方法选择最优模型6)利用学习的最优模型对新数据进行预测或分析1.2监督学习监督学习(supervisedlearning)的任务是学习一个模型,使模型能
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc