tensorflow tf.matmul() (多维)矩阵相乘(多维矩阵乘法)

@tf_export("matmul")
def matmul(a,
           b,
           transpose_a=False,
           transpose_b=False,
           adjoint_a=False,
           adjoint_b=False,
           a_is_sparse=False,
           b_is_sparse=False,
           name=None):
  """Multiplies matrix `a` by matrix `b`, producing `a` * `b`.
  将矩阵a与矩阵b相乘,得出a * b。

  The inputs must, following any transpositions, be tensors of rank >= 2
  where the inner 2 dimensions specify valid matrix multiplication arguments,
  and any further outer dimensions match.

	在进行任何换位后,输入必须为(秩?)> = 2的张量,其中内部2维指定有效的矩阵乘法自变量,
	并且任何其他外部维匹配。

  Both matrices must be of the same type. The supported types are:
  `float16`, `float32`, `float64`, `int32`, `complex64`, `complex128`.

	两种矩阵必须属于同一类型。 支持的类型有:`float16``float32``float64``int32``complex64``complex128`

  Either matrix can be transposed or adjointed (conjugated and transposed) on
  the fly by setting one of the corresponding flag to `True`. These are `False`
  by default.

	通过将相应标志之一设置为“ True”,可以即时对矩阵进行转置或连接(共轭和转置)。 这些默认为False。

  If one or both of the matrices contain a lot of zeros, a more efficient
  multiplication algorithm can be used by setting the corresponding
  `a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default.
  This optimization is only available for plain matrices (rank-2 tensors) with
  datatypes `bfloat16` or `float32`.

	如果一个或两个矩阵都包含大量零,则可以通过将相应的“ a_is_sparse”或“ b_is_sparse”标志,
	设置为“ True”来使用更有效的乘法算法。 这些默认为False。
	 此优化仅适用于数据类型为bfloat16或float32的普通矩阵(秩2张量)。
	
  For example:

  ```python
  # 2-D tensor `a`
  # [[1, 2, 3],
  #  [4, 5, 6]]
  a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])

  # 2-D tensor `b`
  # [[ 7,  8],
  #  [ 9, 10],
  #  [11, 12]]
  b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])

  # `a` * `b`
  # [[ 58,  64],
  #  [139, 154]]
  c = tf.matmul(a, b)


  # 3-D tensor `a`
  # [[[ 1,  2,  3],
  #   [ 4,  5,  6]],
  #  [[ 7,  8,  9],
  #   [10, 11, 12]]]
  a = tf.constant(np.arange(1, 13, dtype=np.int32),
                  shape=[2, 2, 3])

  # 3-D tensor `b`
  # [[[13, 14],
  #   [15, 16],
  #   [17, 18]],
  #  [[19, 20],
  #   [21, 22],
  #   [23, 24]]]
  b = tf.constant(np.arange(13, 25, dtype=np.int32),
                  shape=[2, 3, 2])

  # `a` * `b`
  # [[[ 94, 100],
  #   [229, 244]],
  #  [[508, 532],
  #   [697, 730]]]
  c = tf.matmul(a, b)

  # Since python >= 3.5 the @ operator is supported (see PEP 465).
  # In TensorFlow, it simply calls the `tf.matmul()` function, so the
  # following lines are equivalent:
  由于python> = 3.5,因此支持@运算符(请参阅PEP 465)。
  在TensorFlow中,它仅调用`tf.matmul()`函数,因此以下几行是等效的:
  d = a @ b @ [[10.], [11.]]
  d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])
  
  Args:
    a: `Tensor` of type `float16`, `float32`, `float64`, `int32`, `complex64`,
      `complex128` and rank > 1.
      类型为`float16``float32``float64``int32,`complex64``complex128`和秩> 1`Tensor`
    b: `Tensor` with same type and rank as `a`.
    具有与a相同类型和秩的Tensor。
    transpose_a: If `True`, `a` is transposed before multiplication.
    如果为True,则在相乘之前对a进行转置。
    transpose_b: If `True`, `b` is transposed before multiplication.
    如果为True,则在相乘之前将b换位。
    adjoint_a: If `True`, `a` is conjugated and transposed before
      multiplication.
      如果为True,则在相乘之前对a进行共轭和转置。
    adjoint_b: If `True`, `b` is conjugated and transposed before
      multiplication.
      如果为True,则在相乘之前对b进行共轭和转置。
    a_is_sparse: If `True`, `a` is treated as a sparse matrix.
    如果为True,则将a视为稀疏矩阵。
    b_is_sparse: If `True`, `b` is treated as a sparse matrix.
    如果为True,则将b视为稀疏矩阵。
    name: Name for the operation (optional).
    操作名称(可选)。

  Returns:
    A `Tensor` of the same type as `a` and `b` where each inner-most matrix is
    the product of the corresponding matrices in `a` and `b`, e.g. if all
    transpose or adjoint attributes are `False`:
    `a``b`具有相同类型的`张量`,其中每个最里面的矩阵是`a``b`中对应矩阵的乘积,
    例如 如果所有转置或伴随属性均为False:

    `output`[..., i, j] = sum_k (`a`[..., i, k] * `b`[..., k, j]),
    for all indices i, j.

    Note: This is matrix product, not element-wise product.
    这是矩阵乘积,而不是元素乘积。


  Raises:
    ValueError: If transpose_a and adjoint_a, or transpose_b and adjoint_b
      are both set to True.
  """
  with ops.name_scope(name, "MatMul", [a, b]) as name:
    if transpose_a and adjoint_a:
      raise ValueError("Only one of transpose_a and adjoint_a can be True.")
    if transpose_b and adjoint_b:
      raise ValueError("Only one of transpose_b and adjoint_b can be True.")

    if context.executing_eagerly():
      if not isinstance(a, (ops.EagerTensor, _resource_variable_type)):
        a = ops.convert_to_tensor(a, name="a")
      if not isinstance(b, (ops.EagerTensor, _resource_variable_type)):
        b = ops.convert_to_tensor(b, name="b")
    else:
      a = ops.convert_to_tensor(a, name="a")
      b = ops.convert_to_tensor(b, name="b")

    # TODO(apassos) remove _shape_tuple here when it is not needed.
    a_shape = a._shape_tuple()  # pylint: disable=protected-access
    b_shape = b._shape_tuple()  # pylint: disable=protected-access
    if (not a_is_sparse and
        not b_is_sparse) and ((a_shape is None or len(a_shape) > 2) and
                              (b_shape is None or len(b_shape) > 2)):
      # BatchMatmul does not support transpose, so we conjugate the matrix and
      # use adjoint instead. Conj() is a noop for real matrices.
      if transpose_a:
        a = conj(a)
        adjoint_a = True
      if transpose_b:
        b = conj(b)
        adjoint_b = True
      return gen_math_ops.batch_mat_mul(
          a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)

    # Neither matmul nor sparse_matmul support adjoint, so we conjugate
    # the matrix and use transpose instead. Conj() is a noop for real
    # matrices.
    if adjoint_a:
      a = conj(a)
      transpose_a = True
    if adjoint_b:
      b = conj(b)
      transpose_b = True

    use_sparse_matmul = False
    if a_is_sparse or b_is_sparse:
      sparse_matmul_types = [dtypes.bfloat16, dtypes.float32]
      use_sparse_matmul = (
          a.dtype in sparse_matmul_types and b.dtype in sparse_matmul_types)
    if ((a.dtype == dtypes.bfloat16 or b.dtype == dtypes.bfloat16) and
        a.dtype != b.dtype):
      # matmul currently doesn't handle mixed-precision inputs.
      use_sparse_matmul = True
    if use_sparse_matmul:
      ret = sparse_matmul(
          a,
          b,
          transpose_a=transpose_a,
          transpose_b=transpose_b,
          a_is_sparse=a_is_sparse,
          b_is_sparse=b_is_sparse,
          name=name)
      # sparse_matmul always returns float32, even with
      # bfloat16 inputs. This prevents us from configuring bfloat16 training.
      # casting to bfloat16 also matches non-sparse matmul behavior better.
      if a.dtype == dtypes.bfloat16 and b.dtype == dtypes.bfloat16:
        ret = cast(ret, dtypes.bfloat16)
      return ret
    else:
      return gen_math_ops.mat_mul(
          a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)

tensorflow tf.matmul() (多维)矩阵相乘(多维矩阵乘法)_第1张图片
通过结果可以看出,两个多维矩阵再相乘时,它们除了后两维之外的维度必须相同,否则怎能做到一一对应呢?
比如a的维度是(2,2,3),b的维度是(2,3,2),它们除了最后两维之外的维度2必须相同,而最后两维需要满足矩阵乘法要求,一个是(i,j),另一个必须是(j,k)。

相乘后,除后两维之外的维度不变,后两维变成(i,k),如(…,i,j)*(…,j,k)= (…,i,k)

参考文章:[tensorflow] 多维矩阵的乘法

你可能感兴趣的:(tensorflow)