- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 图像处理之蒸馏
醉后才知酒浓
面试题OpenCV图像处理人工智能计算机视觉深度学习
蒸馏什么是蒸馏蒸馏技术分类什么是轨迹一致性蒸馏(TCD)什么是蒸馏在图像处理领域,蒸馏是一种模型压缩和知识迁移的技术。它的基本思想是利用一个大型且复杂的模型(教师模型)来指导一个小型且简单的模型(学生模型)的训练。教师模型通常具有较高的性能和准确性,但由于其复杂性和计算成本,可能不适合在资源受限的环境中使用。因此,蒸馏的目标是将教师模型的知识转移到学生模型中,以便在保持或接近教师模型性能的同时,降
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 大模型训练和推理
李明朔
AIGC深度学习人工智能
文章目录一、NLP基础1.Tokenizer2.positionencoding3.注意力机制与transformer架构二、大模型训练1.SFT训练2.RLHF训练3.分布式并行训练技术(1)模型并行(2)数据并行4.MoE技术4.PEFT训练5.上下文扩展技术三、大模型推理1.模型压缩(1)剪枝(2)量化2.显存优化技术3.调度优化技术4.请求优化技术5.采样和解码加速6.模型并行策略7.其他
- 基于深度学习的高效模型压缩
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的高效模型压缩技术在确保模型性能的同时,显著减少了模型的存储需求和计算复杂度,从而使得深度学习模型能够更好地适应资源受限的环境(如移动设备、嵌入式系统)并加快推理速度。以下是关于高效模型压缩的详细讨论:1.模型压缩的背景与挑战随着深度学习模型的不断发展,模型规模和复杂性大幅增加,特别是在计算机视觉、自然语言处理等领域,模型通常包含数以亿计的参数。这种大规模模型虽然能够实现高精度,但其计
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 模型压缩开源项目:阿里-tinyNAS/微软NNI/华为-vega
清风2022
tinyNAS神经网络AutoMLvega
文章目录阿里-TinyNAS使用流程步骤一:搜索模型结构步骤二:导出模型结果步骤三:使用搜索的模型结构图像分类任务目标检测任务华为-vega简介定位优点缺点微软NNI简介定位优点缺点阿里-TinyNAShttps://github.com/alibaba/lightweight-neural-architecture-search聚焦NAS,进行合理的模块划分;更偏向算法使用平台,搜索得到精度较好
- 自然语言处理 | (13)kenLM统计语言模型构建与应用
CoreJT
自然语言处理自然语言处理(NLP)kenLM工具库统计语言模型n-gram智能纠错
本篇博客中我们将学习如何使用KenLM工具构建统计语言模型,并使用它完成一个典型的'智能纠错'文本任务。目录1.实验准备2.训练数据3.训练语言模型4.模型压缩5.模型加载6.智能纠错1.实验准备安装依赖#安装依赖!aptinstalllibboost-all-dev!aptinstalllibbz2-dev!aptinstalllibeigen3-dev下载KenLM并编译#下载kenlm压缩包
- 今日arXiv最热NLP大模型论文:微软提出SliceGPT,删除25%模型参数,性能几乎无损
夕小瑶
自然语言处理人工智能
引言:探索大型语言模型的高效压缩方法随着大型语言模型(LLMs)在自然语言处理领域的广泛应用,它们对计算和内存资源的巨大需求成为了一个不容忽视的问题。为了缓解这些资源限制,研究者们提出了多种模型压缩方法,其中剪枝(pruning)技术因其在后训练阶段应用的潜力而备受关注。然而,现有的剪枝技术面临着需要额外数据结构支持和在当前硬件上受限的加速效果等挑战。在这篇博客中,我们将探讨一种新的剪枝方案——S
- 不容错过|大模型等各行业最新赛事汇总,速递给你!
会议之眼
人工智能阿里云微信
比赛动态1、AICAS2024大挑战:通用算力大模型推理性能软硬协同优化挑战赛比赛简介:选手基于通义千问-7B大语言模型,可从多角度提出相关方法(如模型压缩,参数稀疏,精度量化和结构剪枝等),并结合Arm架构硬件特性和开源软件资源(比如硬件BF16,矢量矩阵乘,ArmComputeLibrary等)来系统优化提升大模型在硬件上的推理性能。最终通过赛题组委会指定的测试方案获取选手的优化方法的评分。初
- Yolov8_obb旋转框检测,模型剪枝压缩
早茶和猫
旋转框模型剪枝YOLO剪枝目标检测算法人工智能
Yolov8_obb模型压缩之模型剪枝一、剪枝原理和pipleline参考:yolov5模型压缩之模型剪枝模型压缩(二)yolov5剪枝本次使用稀疏训练对channel维度进行剪枝,来自论文LearningEfficientConvolutionalNetworksThroughNetworkSlimming。其实原理很容易理解,我们知道bn层中存在两个可训练参数γ,β,输入经过bn获得归一化后的
- Threejs in autonomous driving -(2)模型精简
土肥圆_c1ab
在开发准备阶段建模同学都会提供一个车模,从前段考量一般来说超过100kb都算是大文件了,这个模型一般是obj+mtl文件,这两个一般都会超过MB。推动精简的话都非常都难。精简方案删减模型的顶点和面片模型压缩第一种专业性比较强,我们是搞不定的,那么就可以从第二种思路为出发点。通过万能的搜索引擎搜索我们可以找到被誉为3d业界的json格式的gltf。gltf简介。这里推荐两个工具obj2gltfhtt
- 训练和部署之间的区别-模型压缩
An_ich
深度学习python开发语言人工智能网络算法深度学习机器学习
神经网络训练神经网络训练的本质就是找到一个f(x),只不过是一个参数量很大的f(x)那么神经网络训练和部署之间的区别就是减少参数量为什么要减少参数量1.大模型不方便进行部署,网络的推断速度比较慢2.对于移动端等设备也没有这么强的算力3.对于网络训练的结果,也就是网络训练中学习到的知识和网络参数量两者的关系不是线性的,知识和参数量之间的关系更趋向于一个log函数怎样减少参数量1.减小参数的精度例如将
- AI模型压缩技术
SugarPPig
人工智能人工智能
模型压缩技术是指通过一系列方法和技巧,减小深度学习模型的大小和计算量,同时尽量保持模型的性能。这对于在资源受限的设备上部署模型、减少模型传输和存储成本以及提高模型推理速度都非常有用。以下是一些常见的模型压缩技术:参数剪枝(Pruning):通过删除模型中不重要的参数来减小模型的大小。剪枝方法可以基于参数的重要性进行选择,例如,通过设置阈值来删除小于该阈值的参数。量化(Quantization):将
- 和GPT讨论知识蒸馏的基本概念
Mighty_Crane
gpt人工智能
User帮我解释一下知识蒸馏、教师学生网络、逆向蒸馏等概念ChatGPT知识蒸馏(KnowledgeDistillation)是一种模型压缩技术。在这个过程中,一个大型、复杂的模型(通常称为“教师”模型)被用来训练一个更小、更简单的模型(称为“学生”模型)。学生模型不仅学习从数据到输出的映射,还学习模仿教师模型的行为,这通常能提高其性能。逆向蒸馏(ReverseDistillation)是其中的一
- 第五节课 LMDeploy 大模型量化部署实践(笔记)
幽径微澜
书生·浦语大模型实战营(笔记笔记python
来源:(5)LMDeploy大模型量化部署实践_哔哩哔哩_bilibili课程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md1.大模型部署背景(1)模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的要求,常常对需要对模型进行优化,例如模型压缩和硬件
- 【书生·浦语大模型实战营05】《(5)LMDeploy 大模型量化部署实践》学习笔记
songyuc
学习笔记
《(5)LMDeploy大模型量化部署实践》课程文档:《LMDeploy的量化和部署》1、大模型部署背景1.1模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的需求,常常需要对模型进行优化,例如模型压缩和硬件加速产品形态云端、边缘计算端、移动端1.2大模型特点内存开销巨大庞大的参数量。7B模型仅权重就需要14+G显存采用自回归生成token
- Model Compression and Acceleration Overview
Ada's
认知智能认知计算片上互联边缘计算系统科学神经科学认知科学专题《智能芯片》
模型压缩、模型加速模型压缩方法:能够有效降低参数冗余减少存储占用、通信带宽、计算复杂度利部署线性或非线性量化:1/2bits,int8和fp16等;结构或非结构剪枝:deepcompression,channelpruning和networkslimming等;网络结构搜索(NAS:NetworkArchitectureSearch):DARTS,DetNAS、NAS-FCOS、Proxyless
- 初识人工智能,一文读懂过拟合&欠拟合和模型压缩的知识文集(3)
普修罗双战士
人工智能专栏人工智能机器学习自然语言处理语言模型人机交互计算机视觉
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一人工智能专栏人工智能专业知识学习二人工智能专栏人工智能专业知识学习三人工智能专栏人工智能专业知识学习四人工智能专栏人工智能专业知识学习五人工智能专栏人工智能专业知识学习六人工智能专栏人工智能专业知
- 对 MODNet 其他模块的剪枝探索
Maitre Chen
剪枝算法深度学习人工智能计算机视觉
写在前面先前笔者分享了《对MODNet主干网络MobileNetV2的剪枝探索》,没想到被选为了CSDN每天值得看系列,因为笔者开设的专栏《MODNet-Compression探索之旅》仅仅只是记录笔者在模型压缩领域的探索历程,对此笔者深感荣幸,非常感谢官方大大的认可!!!接下来,笔者会加倍努力,创作更多优质文章,为社区贡献更多有价值、有意思的内容!!!!本文将分享笔者对MODNet网络结构内部其
- Knowledge Distillation (1) 模块替换之bert-of-theseus-上篇
小蛋子
更好的阅读体验请跳转至KnowledgeDistillation(1)模块替换之bert-of-theseus-上篇如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,那这艘船还是原来的那艘船吗?-普鲁塔克最近遇到一个需要对算法加速的场景,了解到了一个比较简洁实用的方法:Bert-of-theseus,了解了原理后参考代码实验后,验证了其有效性,所以总结一下。模型压缩模型在设计之初都
- 改进yolov7网络(从轻量化方面的8个方法)
qhchao
YOLO网络计算机视觉
当谈到目标检测领域时,YOLOv7(YouOnlyLookOncev7)是一种非常流行的深度学习网络模型。虽然YOLOv7已经在精度和速度方面取得了显著的改进,但我们仍然可以从轻量化角度来进一步优化该模型。以下是8条关于如何从轻量化角度改进YOLOv7网络的建议:1.模型压缩:使用轻量化的模型压缩技术,如剪枝(pruning)和量化(quantization),来减小YOLOv7的模型大小。通过剪
- 本地模型能力适配
道亦无名
人工智能人工智能
本地模型能力适配是指将多模态大模型应用于本地设备或特定场景时,需要进行的一种技术处理。由于多模态大模型通常需要较大的计算资源和存储空间,直接将其部署到本地设备上可能会面临性能和效率的瓶颈。因此,需要进行本地模型能力适配,以适应本地设备的计算能力和存储限制。具体来说,本地模型能力适配可以通过以下几种方式实现:模型压缩:通过减少模型的大小和计算复杂度,使其更加适合本地设备的计算和存储能力。例如,可以使
- 将大模型与小模型结合的8种常用策略分享,附17篇案例论文和代码
深度之眼
人工智能干货深度学习干货机器学习人工智能深度学习大模型小模型
现在我们对大模型的研究逐渐转向了“降耗增效”,通过结合高性能低耗资的小模型,实现更高效的计算和内存利用,达到满足特定场景的需求、降低成本和提高效率、提升系统性能以及增强适应性和扩展性的目的。那么如何将大模型与小模型结合?目前较常用的策略有模型压缩(蒸馏、剪枝)、提示语压缩、联合推理、迁移学习、权值共享、集成学习等。咱们今天就来简单聊聊这8种策略。部分策略的具体步骤以及每种策略相关的参考论文我也放上
- Knowledge Distilling,知识蒸馏
FeynmanMa
Distillingtheknowledgeinaneuralnetwork1.Motivationknowledge_distilling_title.jpg论文作者比较大名鼎鼎了。Motivation一部分来自模型压缩[2],一部分源自作者认为大部分机器学习采用ensemble方法或者学习一个很大的模型来取得比较好的结果,但会给实际应用预测带来很大的压力,而且实际上模型之间也是有信息冗余的。希
- 大模型听课笔记——书生·浦语(5)
亲爱的阿基米德^
笔记
LMDeploy的量化和部署1大模型部署简介模型部署:将训练好的模型在特定软硬件环境中启动的过程,使模型能够接受输入并返回结果。为了满足性能和效率的需求。常常需要对模型进行优化,例如模型压缩和硬件加速产品形态:云端、变韵计算端、移动端计算设备:CPU、GPU、NPU、TPU等大模型的特点:内存开销巨大庞大的参数量采用自回归生成token,需要缓存Attentiondek/v,带来巨大的内存开销动态
- 【书生·浦语】大模型实战营——第五课笔记
Horace_01
笔记人工智能python语言模型
教程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md视频链接:https://www.bilibili.com/video/BV1iW4y1A77P大模型部署背景关于模型部署通常需要模型压缩和硬件加速大模型的特点1、显存、内存花销巨大2、动态shape,输入输出数量不定3、相对视觉模型,LLM结构简单,大部
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象