1.内容:循环抓取豆瓣影评中所有观众对《陈情令》的评论,存储在文本文档中,并运用可视化库--词云对其进行分析。
2.目标网站:https://movie.douban.com/subject/27195020/comments?start=
3.使用软件:pycharm
4.使用 python3.7 版本
5.涉及的python类库:requests、lxml、wordcloud、numpy、PIL、jieba
1.安装、导入相应的类库(本机已安装类库)
import requests
from lxml import etree #xpath
from wordcloud import WordCloud
import PIL.Image as image #引入读取图片的工具
import numpy as np
import jieba # 分词
2.确定网页,获取请求头,解决反爬机制,并且循环获取所有页面
#获取html源代码
def getPage(url):
headers = {
"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64)"
" AppleWebKit/537.36 (KHTML, like Gecko)"
" Chrome/63.0.3239.132 Safari/537.36"
}
response = requests.get(url,headers = headers).text
return response
#循环获得所有页面的url
def all_page():
base_url = "https://movie.douban.com/subject/27195020/comments?start="
#列表存放所有的网页,共10页
urllist = []
for page in range(0,200,20):
allurl = base_url+str(page)
urllist.append(allurl)
return urllist
3.运用xpath获取短评
#解析网页
def parse():
#列表存放所有的短评
all_comment = []
number = 1
for url in all_page():
#初始化
html = etree.HTML(getPage(url))
#短评
comment = html.xpath('//div[@class="comment"]//p/span/text()')
all_comment.append(comment)
print('第'+str(number)+'页解析并保存成功')
number += 1
return all_comment
4.存入txt文档
#保存为txt
def save_to_txt():
result = parse()
for i in range(len(result)):
with open('陈情令评论集.txt','a+',encoding='utf-8') as f:
f.write(str(result[i])+'\n') #按行存储每一页的数据
f.close()
5.将文档的短评进行分词
#将爬取的文档进行分词
def trans_CN(text):
word_list = jieba.cut(text)
#分词后在单独个体之间加上空格
result = " ".join(word_list)
return result
6.制作词云
#制作词云
def getWordCloud():
path_txt = "陈情令评论集.txt" #文档
path_jpg = "1.jpg" #词云形状图片
path_font = "C:\\Windows\\Fonts\\msyh.ttc" #字体
text = open(path_txt,encoding='utf-8').read()
#剔除无关字
text = text.replace("真的"," ")
text = text.replace("什么", " ")
text = text.replace("但是", " ")
text = text.replace("而且", " ")
text = text.replace("那么", " ")
text = text.replace("就是", " ")
text = text.replace("可以", " ")
text = text.replace("不是", " ")
text = trans_CN(text)
mask = np.array(image.open(path_jpg)) #词云图案
wordcloud = WordCloud(
background_color='white', #词云背景颜色
mask=mask,
scale=15,
max_font_size=80,
font_path=path_font
).generate(text)
wordcloud.to_file('陈情令评论词云.jpg')
#!/usr/bin/env python
#-*- coding:utf-8 -*-
#author : Only time:2019/8/3 0002
import requests
from lxml import etree #xpath
from wordcloud import WordCloud
import PIL.Image as image #引入读取图片的工具
import numpy as np
import jieba # 分词
#获取html源代码
def getPage(url):
headers = {
"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64)"
" AppleWebKit/537.36 (KHTML, like Gecko)"
" Chrome/63.0.3239.132 Safari/537.36"
}
response = requests.get(url,headers = headers).text
return response
#获得所有页面
def all_page():
base_url = "https://movie.douban.com/subject/27195020/comments?start="
#列表存放所有的网页,共10页
urllist = []
for page in range(0,200,20):
allurl = base_url+str(page)
urllist.append(allurl)
return urllist
#解析网页
def parse():
#列表存放所有的短评
all_comment = []
number = 1
for url in all_page():
#初始化
html = etree.HTML(getPage(url))
#短评
comment = html.xpath('//div[@class="comment"]//p/span/text()')
all_comment.append(comment)
print('第'+str(number)+'页解析并保存成功')
number += 1
return all_comment
#保存为txt
def save_to_txt():
result = parse()
for i in range(len(result)):
with open('陈情令评论集.txt','a+',encoding='utf-8') as f:
f.write(str(result[i])+'\n') #按行存储每一页的数据
f.close()
#将爬取的文档进行分词
def trans_CN(text):
word_list = jieba.cut(text)
#分词后在单独个体之间加上空格
result = " ".join(word_list)
return result
#制作词云
def getWordCloud():
path_txt = "陈情令评论集.txt"
path_jpg = "1.jpg"
path_font = "C:\\Windows\\Fonts\\msyh.ttc"
text = open(path_txt,encoding='utf-8').read()
#剔除无关字
text = text.replace("真的"," ")
text = text.replace("什么", " ")
text = text.replace("但是", " ")
text = text.replace("而且", " ")
text = text.replace("那么", " ")
text = text.replace("就是", " ")
text = text.replace("可以", " ")
text = text.replace("不是", " ")
text = trans_CN(text)
mask = np.array(image.open(path_jpg)) #词云背景图案
wordcloud = WordCloud(
background_color='white',
mask=mask,
scale=15,
max_font_size=80,
font_path=path_font
).generate(text)
wordcloud.to_file('陈情令评论词云.jpg')
#主函数
if __name__ == '__main__':
save_to_txt()
print('所有页面保存成功')
getWordCloud()
print('词云制作成功')
1.运行结果
2.生成的短评文档内容
3.生成词云展示