OpenCV之imgproc 模块. 图像处理(1)图像平滑处理 腐蚀与膨胀(Eroding and Dilating) 更多形态学变换 图像金字塔 基本的阈值操作

图像平滑处理

目标

本教程教您怎样使用各种线性滤波器对图像进行平滑处理,相关OpenCV函数如下:

  • blur
  • GaussianBlur
  • medianBlur
  • bilateralFilter

原理

Note

 

以下原理来源于Richard Szeliski 的著作 Computer Vision: Algorithms and Applications 以及 Learning OpenCV

  • 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法。

  • 平滑处理的用途有很多, 但是在本教程中我们仅仅关注它减少噪声的功用 (其他用途在以后的教程中会接触到)。

  • 平滑处理时需要用到一个 滤波器 。 最常用的滤波器是 线性 滤波器,线性滤波处理的输出像素值 (i.e. g(i,j)) 是输入像素值 (i.e. f(i+k,j+l))的加权和 :

    g(i,j) = \sum_{k,l} f(i+k, j+l) h(k,l)

    h(k,l) 称为 , 它仅仅是一个加权系数。

    不妨把 滤波器 想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口滑过图像。

  • 滤波器的种类有很多, 这里仅仅提及最常用的:

归一化块滤波器 (Normalized Box Filter)

  • 最简单的滤波器, 输出像素值是核窗口内像素值的 均值 ( 所有像素加权系数相等)

  • 核如下:

    K = \dfrac{1}{K_{width} \cdot K_{height}} \begin{bmatrix}    1 & 1 & 1 & ... & 1 \\    1 & 1 & 1 & ... & 1 \\    . & . & . & ... & 1 \\    . & . & . & ... & 1 \\    1 & 1 & 1 & ... & 1   \end{bmatrix}

高斯滤波器 (Gaussian Filter)

  • 最有用的滤波器 (尽管不是最快的)。 高斯滤波是将输入数组的每一个像素点与 高斯内核 卷积将卷积和当作输出像素值。

  • 还记得1维高斯函数的样子吗?

    ../../../../_images/Smoothing_Tutorial_theory_gaussian_0.jpg

    假设图像是1维的,那么观察上图,不难发现中间像素的加权系数是最大的, 周边像素的加权系数随着它们远离中间像素的距离增大而逐渐减小。

Note

 

2维高斯函数可以表达为 :

G_{0}(x, y) = A  e^{ \dfrac{ -(x - \mu_{x})^{2} }{ 2\sigma^{2}_{x} } +  \dfrac{ -(y - \mu_{y})^{2} }{ 2\sigma^{2}_{y} } }

其中 \mu 为均值 (峰值对应位置), \sigma 代表标准差 (变量 x 和 变量 y 各有一个均值,也各有一个标准差)

中值滤波器 (Median Filter)

中值滤波将图像的每个像素用邻域 (以当前像素为中心的正方形区域)像素的 中值 代替 。

双边滤波 (Bilateral Filter)

  • 目前我们了解的滤波器都是为了 平滑 图像, 问题是有些时候这些滤波器不仅仅削弱了噪声, 连带着把边缘也给磨掉了。 为避免这样的情形 (至少在一定程度上 ), 我们可以使用双边滤波。
  • 类似于高斯滤波器,双边滤波器也给每一个邻域像素分配一个加权系数。 这些加权系数包含两个部分, 第一部分加权方式与高斯滤波一样,第二部分的权重则取决于该邻域像素与当前像素的灰度差值。
  • 详细的解释可以查看 链接

源码

  • 本程序做什么?

    • 装载一张图像
    • 使用4种不同滤波器 (见原理部分) 并显示平滑图像
  • 下载代码: 点击 这里

  • 代码一瞥:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace std;
using namespace cv;

/// 全局变量
int DELAY_CAPTION = 1500;
int DELAY_BLUR = 100;
int MAX_KERNEL_LENGTH = 31;

Mat src; Mat dst;
char window_name[] = "Filter Demo 1";

/// 函数申明
int display_caption( char* caption );
int display_dst( int delay );

/**
 *  main 函数
 */
 int main( int argc, char** argv )
 {
   namedWindow( window_name, CV_WINDOW_AUTOSIZE );

   /// 载入原图像
   src = imread( "../images/lena.jpg", 1 );

   if( display_caption( "Original Image" ) != 0 ) { return 0; }

   dst = src.clone();
   if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; }

   /// 使用 均值平滑
   if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; }

   for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
       { blur( src, dst, Size( i, i ), Point(-1,-1) );
         if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }

    /// 使用高斯平滑
    if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; }

    for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
        { GaussianBlur( src, dst, Size( i, i ), 0, 0 );
          if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }

     /// 使用中值平滑
     if( display_caption( "Median Blur" ) != 0 ) { return 0; }

     for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
         { medianBlur ( src, dst, i );
           if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }

     /// 使用双边平滑
     if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; }

     for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
         { bilateralFilter ( src, dst, i, i*2, i/2 );
           if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }

     /// 等待用户输入
     display_caption( "End: Press a key!" );

     waitKey(0);
     return 0;
 }

 int display_caption( char* caption )
 {
   dst = Mat::zeros( src.size(), src.type() );
   putText( dst, caption,
            Point( src.cols/4, src.rows/2),
            CV_FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );

   imshow( window_name, dst );
   int c = waitKey( DELAY_CAPTION );
   if( c >= 0 ) { return -1; }
   return 0;
  }

  int display_dst( int delay )
  {
    imshow( window_name, dst );
    int c = waitKey ( delay );
    if( c >= 0 ) { return -1; }
    return 0;
  }

解释

  1. 下面看一看有关平滑的OpenCV函数,其余部分大家已经很熟了。

  2. 归一化块滤波器:

    OpenCV函数 blur 执行了归一化块平滑操作。

    for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
        { blur( src, dst, Size( i, i ), Point(-1,-1) );
          if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
    

    我们输入4个实参 (详细的解释请参考 Reference):

    • src: 输入图像
    • dst: 输出图像
    • Size( w,h ): 定义内核大小( w 像素宽度, h 像素高度)
    • Point(-1, -1): 指定锚点位置(被平滑点), 如果是负值,取核的中心为锚点。
  3. 高斯滤波器:

    OpenCV函数 GaussianBlur 执行高斯平滑 :

    for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
        { GaussianBlur( src, dst, Size( i, i ), 0, 0 );
          if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
    

我们输入4个实参 (详细的解释请参考 Reference):

  • src: 输入图像
  • dst: 输出图像
  • Size(w, h): 定义内核的大小(需要考虑的邻域范围)。 w 和 h 必须是正奇数,否则将使用 \sigma_{x} 和 \sigma_{y}参数来计算内核大小。
  • \sigma_{x}: x 方向标准方差, 如果是 0 则 \sigma_{x} 使用内核大小计算得到。
  • \sigma_{y}: y 方向标准方差, 如果是 0 则 \sigma_{y} 使用内核大小计算得到。.
  1. 中值滤波器:

    OpenCV函数 medianBlur 执行中值滤波操作:

    for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
        { medianBlur ( src, dst, i );
          if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
    

    我们用了3个参数:

    • src: 输入图像
    • dst: 输出图像, 必须与 src 相同类型
    • i: 内核大小 (只需一个值,因为我们使用正方形窗口),必须为奇数。
  2. 双边滤波器

    OpenCV函数 bilateralFilter 执行双边滤波操作:

    for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
        { bilateralFilter ( src, dst, i, i*2, i/2 );
          if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
    

    我们使用了5个参数:

    • src: 输入图像
    • dst: 输出图像
    • d: 像素的邻域直径
    • \sigma_{Color}: 颜色空间的标准方差
    • \sigma_{Space}: 坐标空间的标准方差(像素单位)

结果

  • 程序显示了原始图像( lena.jpg) 和使用4种滤波器之后的效果图。

  • 这里显示的是使用 中值滤波 之后的效果图:

    Smoothing with a median filter



腐蚀与膨胀(Eroding and Dilating)

目标

本文档尝试解答如下问题:

  • 如何使用OpenCV提供的两种最基本的形态学操作,腐蚀与膨胀( Erosion 与 Dilation):
    • erode
    • dilate

原理

Note

 

以下内容来自于Bradski和Kaehler的大作: Learning OpenCV .

形态学操作

  • 简单来讲,形态学操作就是基于形状的一系列图像处理操作。通过将 结构元素 作用于输入图像来产生输出图像。

  • 最基本的形态学操作有二:腐蚀与膨胀(Erosion 与 Dilation)。 他们的运用广泛:

    • 消除噪声
    • 分割(isolate)独立的图像元素,以及连接(join)相邻的元素。
    • 寻找图像中的明显的极大值区域或极小值区域。
  • 通过以下图像,我们简要来讨论一下膨胀与腐蚀操作(译者注:注意这张图像中的字母为黑色,背景为白色,而不是一般意义的背景为黑色,前景为白色):

    Original image

膨胀

  • 此操作将图像 A 与任意形状的内核 (B),通常为正方形或圆形,进行卷积。

  • 内核 B 有一个可定义的 锚点, 通常定义为内核中心点。

  • 进行膨胀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” (因此有了术语膨胀 dilation )。对上图采用膨胀操作我们得到:

    Dilation result - Theory example

背景(白色)膨胀,而黑色字母缩小了。

腐蚀

  • 腐蚀在形态学操作家族里是膨胀操作的孪生姐妹。它提取的是内核覆盖下的相素最小值。

  • 进行腐蚀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最小相素值提取,并代替锚点位置的相素。

  • 以与膨胀相同的图像作为样本,我们使用腐蚀操作。从下面的结果图我们看到亮区(背景)变细,而黑色区域(字母)则变大了。

    Erosion result - Theory example

源码

下面是本教程的源码, 你也可以从 here 下载。

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "highgui.h"
#include 
#include 

using namespace cv;

/// 全局变量
Mat src, erosion_dst, dilation_dst;

int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;

/** Function Headers */
void Erosion( int, void* );
void Dilation( int, void* );

/** @function main */
int main( int argc, char** argv )
{
  /// Load 图像
  src = imread( argv[1] );

  if( !src.data )
  { return -1; }

  /// 创建显示窗口
  namedWindow( "Erosion Demo", CV_WINDOW_AUTOSIZE );
  namedWindow( "Dilation Demo", CV_WINDOW_AUTOSIZE );
  cvMoveWindow( "Dilation Demo", src.cols, 0 );

  /// 创建腐蚀 Trackbar
  createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Erosion Demo",
                  &erosion_elem, max_elem,
                  Erosion );

  createTrackbar( "Kernel size:\n 2n +1", "Erosion Demo",
                  &erosion_size, max_kernel_size,
                  Erosion );

  /// 创建膨胀 Trackbar
  createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Dilation Demo",
                  &dilation_elem, max_elem,
                  Dilation );

  createTrackbar( "Kernel size:\n 2n +1", "Dilation Demo",
                  &dilation_size, max_kernel_size,
                  Dilation );

  /// Default start
  Erosion( 0, 0 );
  Dilation( 0, 0 );

  waitKey(0);
  return 0;
}

/**  @function Erosion  */
void Erosion( int, void* )
{
  int erosion_type;
  if( erosion_elem == 0 ){ erosion_type = MORPH_RECT; }
  else if( erosion_elem == 1 ){ erosion_type = MORPH_CROSS; }
  else if( erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }

  Mat element = getStructuringElement( erosion_type,
                                       Size( 2*erosion_size + 1, 2*erosion_size+1 ),
                                       Point( erosion_size, erosion_size ) );

  /// 腐蚀操作
  erode( src, erosion_dst, element );
  imshow( "Erosion Demo", erosion_dst );
}

/** @function Dilation */
void Dilation( int, void* )
{
  int dilation_type;
  if( dilation_elem == 0 ){ dilation_type = MORPH_RECT; }
  else if( dilation_elem == 1 ){ dilation_type = MORPH_CROSS; }
  else if( dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

  Mat element = getStructuringElement( dilation_type,
                                       Size( 2*dilation_size + 1, 2*dilation_size+1 ),
                                       Point( dilation_size, dilation_size ) );
  ///膨胀操作
  dilate( src, dilation_dst, element );
  imshow( "Dilation Demo", dilation_dst );
}

解释

  1. 大部分代码应该不需要解释了 (如果有任何疑问,请回头参考前面的教程)。 让我们来回顾一下本程序的总体流程:

    • 装载图像 (可以是 RGB图像或者灰度图 )
    • 创建两个显示窗口 (一个用于膨胀输出,一个用于腐蚀输出)
    • 为每个操作创建两个 Trackbars:
      • 第一个 trackbar “Element” 返回 erosion_elem 或者 dilation_elem
      • 第二个 trackbar “Kernel size” 返回 erosion_size 或者 dilation_size 。
    • 每次移动标尺, 用户函数 Erosion 或者 Dilation 就会被调用,函数将根据当前的trackbar位置更新输出图像。

    让我们分析一下这两个函数:

  2. Erosion:

    /**  @function Erosion  */
    void Erosion( int, void* )
    {
      int erosion_type;
      if( erosion_elem == 0 ){ erosion_type = MORPH_RECT; }
      else if( erosion_elem == 1 ){ erosion_type = MORPH_CROSS; }
      else if( erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }
    
      Mat element = getStructuringElement( erosion_type,
                                           Size( 2*erosion_size + 1, 2*erosion_size+1 ),
                                           Point( erosion_size, erosion_size ) );
      /// 腐蚀操作
      erode( src, erosion_dst, element );
      imshow( "Erosion Demo", erosion_dst );
    }
    
    • 进行 腐蚀 操作的函数是 erode 。 它接受了三个参数:

      • src: 原图像

      • erosion_dst: 输出图像

      • element: 腐蚀操作的内核。 如果不指定,默认为一个简单的 3x3 矩阵。否则,我们就要明确指定它的形状,可以使用函数 getStructuringElement:

        Mat element = getStructuringElement( erosion_type,
                                             Size( 2*erosion_size + 1, 2*erosion_size+1 ),
                                             Point( erosion_size, erosion_size ) );
        

      我们可以为我们的内核选择三种形状之一:

      • 矩形: MORPH_RECT
      • 交叉形: MORPH_CROSS
      • 椭圆形: MORPH_ELLIPSE

      然后,我们还需要指定内核大小,以及 锚点 位置。不指定锚点位置,则默认锚点在内核中心位置。

    • 就这些了,我们现在可以对图像进行腐蚀操作了。

    Note

     

    OpenCV的 erode 函数还有另外的参数,其中一个参数允许你一下对图像进行多次腐蚀操作。在这个简单的文档中没有用到它,但是你可以参考OpenCV的使用手册。

  3. Dilation:

下面是膨胀的代码,你可以看到,它和 Erosion 函数是多么相似。 这里我们同样可以指定内核的形状,锚点和大小。

/** @function Dilation */
void Dilation( int, void* )
{
  int dilation_type;
  if( dilation_elem == 0 ){ dilation_type = MORPH_RECT; }
  else if( dilation_elem == 1 ){ dilation_type = MORPH_CROSS; }
  else if( dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

  Mat element = getStructuringElement( dilation_type,
                                       Size( 2*dilation_size + 1, 2*dilation_size+1 ),
                                       Point( dilation_size, dilation_size ) );
  /// 膨胀操作
  dilate( src, dilation_dst, element );
  imshow( "Dilation Demo", dilation_dst );
}

结果

  • 编译并使用图像路径作为参数运行程序,比如我们使用以下图像:

    Original image

    下面是操作的结果。 更改Trackbars的位置就会产生不一样的输出图像,自己试试吧。 最后,你还可以通过增加第三个Trackbar来控制膨胀或腐蚀的次数。

    Dilation and Erosion application







更多形态学变换

目标

本文档尝试解答如下问题:

  • 如何使用OpenCV函数 morphologyEx 进行形态学操作:
    • 开运算 (Opening)
    • 闭运算 (Closing)
    • 形态梯度 (Morphological Gradient)
    • 顶帽 (Top Hat)
    • 黑帽(Black Hat)

原理

Note

 

以下内容来自于Bradski和Kaehler的大作 Learning OpenCV 。

前一节我们讨论了两种最基本的形态学操作:

  • 腐蚀 (Erosion)
  • 膨胀 (Dilation)

运用这两个基本操作,我们可以实现更高级的形态学变换。这篇文档将会简要介绍OpenCV提供的5种高级形态学操作:

开运算 (Opening)

  • 开运算是通过先对图像腐蚀再膨胀实现的。

    dst = open( src, element) = dilate( erode( src, element ) )

  • 能够排除小团块物体(假设物体较背景明亮)

  • 请看下面,左图是原图像,右图是采用开运算转换之后的结果图。 观察发现字母拐弯处的白色空间消失。

    Opening

闭运算(Closing)

  • 闭运算是通过先对图像膨胀再腐蚀实现的。

    dst = close( src, element ) = erode( dilate( src, element ) )

  • 能够排除小型黑洞(黑色区域)。

    Closing example

形态梯度(Morphological Gradient)

  • 膨胀图与腐蚀图之差

    dst = morph_{grad}( src, element ) = dilate( src, element ) - erode( src, element )

  • 能够保留物体的边缘轮廓,如下所示:

    Gradient

顶帽(Top Hat)

  • 原图像与开运算结果图之差

    dst = tophat( src, element ) = src - open( src, element )

    Top Hat

黑帽(Black Hat)

  • 闭运算结果图与原图像之差

    dst = blackhat( src, element ) = close( src, element ) - src

    Black Hat

源码

下面是本教程的源码, 你也可以从 这里 下载。

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include 
#include 

using namespace cv;

/// 全局变量
Mat src, dst;

int morph_elem = 0;
int morph_size = 0;
int morph_operator = 0;
int const max_operator = 4;
int const max_elem = 2;
int const max_kernel_size = 21;

char* window_name = "Morphology Transformations Demo";

/** 回调函数申明 */
void Morphology_Operations( int, void* );

/** @函数 main */
int main( int argc, char** argv )
{
  /// 装载图像
  src = imread( argv[1] );

  if( !src.data )
  { return -1; }

 /// 创建显示窗口
 namedWindow( window_name, CV_WINDOW_AUTOSIZE );

 /// 创建选择具体操作的 trackbar
 createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat", window_name, &morph_operator, max_operator, Morphology_Operations );

 /// 创建选择内核形状的 trackbar
 createTrackbar( "Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,
                 &morph_elem, max_elem,
                 Morphology_Operations );

 /// 创建选择内核大小的 trackbar
 createTrackbar( "Kernel size:\n 2n +1", window_name,
                 &morph_size, max_kernel_size,
                 Morphology_Operations );

 /// 启动使用默认值
 Morphology_Operations( 0, 0 );

 waitKey(0);
 return 0;
 }

 /**
  * @函数 Morphology_Operations
  */
void Morphology_Operations( int, void* )
{
  // 由于 MORPH_X的取值范围是: 2,3,4,5 和 6
  int operation = morph_operator + 2;

  Mat element = getStructuringElement( morph_elem, Size( 2*morph_size + 1, 2*morph_size+1 ), Point( morph_size, morph_size ) );

  /// 运行指定形态学操作
  morphologyEx( src, dst, operation, element );
  imshow( window_name, dst );
  }

解释

  1. 看一下程序的总体流程:

    • 装载图像

    • 创建显示形态学操作的窗口

    • 创建3个trackbar获取用户参数:

      • 第一个trackbar “Operator” 返回用户选择的形态学操作类型 (morph_operator).

        createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat",
                       window_name, &morph_operator, max_operator,
                       Morphology_Operations );
        
      • 第二个trackbar “Element” 返回 morph_elem, 指定内核形状:

        createTrackbar( "Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,
                        &morph_elem, max_elem,
                        Morphology_Operations );
        
      • 第三个trackbar “Kernel Size” 返回内核大小(morph_size)

        createTrackbar( "Kernel size:\n 2n +1", window_name,
                        &morph_size, max_kernel_size,
                        Morphology_Operations );
        
    • 每当任一标尺被移动, 用户函数 Morphology_Operations 就会被调用,该函数获取trackbar的当前值运行指定操作并更新显示结果图像。

       /**
        * @函数 Morphology_Operations
        */
      void Morphology_Operations( int, void* )
      {
        // 由于 MORPH_X的取值范围是: 2,3,4,5 和 6
        int operation = morph_operator + 2;
      
        Mat element = getStructuringElement( morph_elem, Size( 2*morph_size + 1, 2*morph_size+1 ), Point( morph_size, morph_size ) );
      
        /// 运行指定形态学操作
        morphologyEx( src, dst, operation, element );
        imshow( window_name, dst );
       }
      

      运行形态学操作的核心函数是 morphologyEx 。在本例中,我们使用了4个参数(其余使用默认值):

      • src : 原 (输入) 图像
      • dst: 输出图像
      • operation: 需要运行的形态学操作。 我们有5个选项:
        • Opening: MORPH_OPEN : 2
        • Closing: MORPH_CLOSE: 3
        • Gradient: MORPH_GRADIENT: 4
        • Top Hat: MORPH_TOPHAT: 5
        • Black Hat: MORPH_BLACKHAT: 6

      你可以看到, 它们的取值范围是 <2-6>, 因此我们要将从tracker获取的值增加(+2):

      int operation = morph_operator + 2;
      
      • element: 内核,可以使用函数:get_structuring_element:getStructuringElement <> 自定义。

结果

  • 在编译上面的代码之后, 我们可以运行结果,将图片路径输入。这里使用图像: baboon.png:

    OpenCV之imgproc 模块. 图像处理(1)图像平滑处理 腐蚀与膨胀(Eroding and Dilating) 更多形态学变换 图像金字塔 基本的阈值操作_第1张图片
  • 这里是显示窗口的两个截图。第一幅图显示了使用交错内核和 开运算 之后的结果, 第二幅图显示了使用椭圆内核和 黑帽 之后的结果。

    OpenCV之imgproc 模块. 图像处理(1)图像平滑处理 腐蚀与膨胀(Eroding and Dilating) 更多形态学变换 图像金字塔 基本的阈值操作_第2张图片










图像金字塔

目标

本文档尝试解答如下问题:

  • 如何使用OpenCV函数 pyrUp 和 pyrDown 对图像进行向上和向下采样。

原理

Note

 

以下内容来自于Bradski和Kaehler的大作: Learning OpenCV 。

  • 当我们需要将图像转换到另一个尺寸的时候, 有两种可能:
    1. 放大 图像 或者
    2. 缩小 图像。
  • 尽管OpenCV 几何变换 部分提供了一个真正意义上的图像缩放函数(resize, 在以后的教程中会学到),不过在本篇我们首先学习一下使用 图像金字塔 来做图像缩放, 图像金字塔是视觉运用中广泛采用的一项技术。

图像金字塔

  • 一个图像金字塔是一系列图像的集合 - 所有图像来源于同一张原始图像 - 通过梯次向下采样获得,直到达到某个终止条件才停止采样。
  • 有两种类型的图像金字塔常常出现在文献和应用中:
    • 高斯金字塔(Gaussian pyramid): 用来向下采样
    • 拉普拉斯金字塔(Laplacian pyramid): 用来从金字塔低层图像重建上层未采样图像
  • 在这篇文档中我们将使用 高斯金字塔 。

高斯金字塔

  • 想想金字塔为一层一层的图像,层级越高,图像越小。

    Pyramid figure
  • 每一层都按从下到上的次序编号, 层级 (i+1) (表示为 G_{i+1} 尺寸小于层级 i (G_{i}))。

  • 为了获取层级为 (i+1) 的金字塔图像,我们采用如下方法:

    • 将 G_{i} 与高斯内核卷积:

      \frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}

    • 将所有偶数行和列去除。

  • 显而易见,结果图像只有原图的四分之一。通过对输入图像 G_{0} (原始图像) 不停迭代以上步骤就会得到整个金字塔。

  • 以上过程描述了对图像的向下采样,如果将图像变大呢?:

    • 首先,将图像在每个方向扩大为原来的两倍,新增的行和列以0填充(0)
    • 使用先前同样的内核(乘以4)与放大后的图像卷积,获得 “新增像素” 的近似值。
  • 这两个步骤(向下和向上采样) 分别通过OpenCV函数 pyrUp 和 pyrDown 实现, 我们将会在下面的示例中演示如何使用这两个函数。

Note

 

我们向下采样缩小图像的时候, 我们实际上 丢失 了一些信息。

源码

本教程的源码如下,你也可以从 这里 下载

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include 
#include 
#include 

using namespace cv;

/// 全局变量
Mat src, dst, tmp;
char* window_name = "Pyramids Demo";


/**
 * @函数 main
 */
int main( int argc, char** argv )
{
  /// 指示说明
  printf( "\n Zoom In-Out demo  \n " );
  printf( "------------------ \n" );
  printf( " * [u] -> Zoom in  \n" );
  printf( " * [d] -> Zoom out \n" );
  printf( " * [ESC] -> Close program \n \n" );

  /// 测试图像 - 尺寸必须能被 2^{n} 整除
  src = imread( "../images/chicky_512.jpg" );
  if( !src.data )
    { printf(" No data! -- Exiting the program \n");
      return -1; }

  tmp = src;
  dst = tmp;

  /// 创建显示窗口
  namedWindow( window_name, CV_WINDOW_AUTOSIZE );
  imshow( window_name, dst );

  /// 循环
  while( true )
  {
    int c;
    c = waitKey(10);

    if( (char)c == 27 )
      { break; }
    if( (char)c == 'u' )
      { pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) );
        printf( "** Zoom In: Image x 2 \n" );
      }
    else if( (char)c == 'd' )
     { pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) );
       printf( "** Zoom Out: Image / 2 \n" );
     }

    imshow( window_name, dst );
    tmp = dst;
  }
  return 0;
}

解释

  1. 让我们来回顾一下本程序的总体流程:

    • 装载图像(此处路径由程序设定,用户无需将图像路径当作参数输入)

      /// 测试图像 - 尺寸必须能被 2^{n} 整除
      src = imread( "../images/chicky_512.jpg" );
      if( !src.data )
        { printf(" No data! -- Exiting the program \n");
          return -1; }
      
    • 创建两个Mat实例, 一个用来储存操作结果(dst), 另一个用来存储零时结果(tmp)。

      Mat src, dst, tmp;
      /* ... */
      tmp = src;
      dst = tmp;
      
    • 创建窗口显示结果

      namedWindow( window_name, CV_WINDOW_AUTOSIZE );
      imshow( window_name, dst );
      
    • 执行无限循环,等待用户输入。

      while( true )
      {
        int c;
        c = waitKey(10);
      
        if( (char)c == 27 )
          { break; }
        if( (char)c == 'u' )
          { pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) );
            printf( "** Zoom In: Image x 2 \n" );
          }
        else if( (char)c == 'd' )
         { pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) );
           printf( "** Zoom Out: Image / 2 \n" );
         }
      
        imshow( window_name, dst );
        tmp = dst;
      }
      

      如果用户按 ESC 键程序退出。 此外,它还提供两个选项:

      • 向上采样 (按 ‘u’)

        pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 )
        

        函数 pyrUp 接受了3个参数:

        • tmp: 当前图像, 初始化为原图像 src 。
        • dst: 目的图像( 显示图像,为输入图像的两倍)
        • Size( tmp.cols*2, tmp.rows*2 ) : 目的图像大小, 既然我们是向上采样, pyrUp 期待一个两倍于输入图像( tmp )的大小。
      • 向下采样(按 ‘d’)

        pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 )
        

        类似于 pyrUp, 函数 pyrDown 也接受了3个参数:

        • tmp: 当前图像, 初始化为原图像 src 。
        • dst: 目的图像( 显示图像,为输入图像的一半)
        • Size( tmp.cols/2, tmp.rows/2 ) :目的图像大小, 既然我们是向下采样, pyrDown 期待一个一半于输入图像( tmp)的大小。
      • 注意输入图像的大小(在两个方向)必须是2的冥,否则,将会显示错误。

      • 最后,将输入图像 tmp 更新为当前显示图像, 这样后续操作将作用于更新后的图像。

        tmp = dst;
        

结果

  • 在编译上面的代码之后, 我们可以运行结果。 程序调用了图像 chicky_512.jpg ,你可以在 tutorial_code/image 文件夹找到它。 注意图像大小是 512 \times 512, 因此向下采样不会产生错误(512 = 2^{9})。 原图像如下所示:

    OpenCV之imgproc 模块. 图像处理(1)图像平滑处理 腐蚀与膨胀(Eroding and Dilating) 更多形态学变换 图像金字塔 基本的阈值操作_第3张图片
  • 首先按两次 ‘d’ 连续两次向下采样 pyrDown ,结果如图:

    OpenCV之imgproc 模块. 图像处理(1)图像平滑处理 腐蚀与膨胀(Eroding and Dilating) 更多形态学变换 图像金字塔 基本的阈值操作_第4张图片
  • 由于我们缩小了图像,我们也因此丢失了一些信息。通过连续按两次 ‘u’ 向上采样两次 pyrUp ,很明显图像有些失真:

    OpenCV之imgproc 模块. 图像处理(1)图像平滑处理 腐蚀与膨胀(Eroding and Dilating) 更多形态学变换 图像金字塔 基本的阈值操作_第5张图片







基本的阈值操作

目标:

本节简介:

  • OpenCV中的阈值(threshold)函数: threshold 的运用。

基本理论:

注意:
本节的解释出自Bradski与Kaehler的书籍  Learning OpenCV 。

什么是阈值?

  • 最简单的图像分割的方法。

  • 应用举例:从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体)。这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割。

  • 为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。(注意:阈值的选取依赖于具体的问题。即:物体在不同的图像中有可能会有不同的灰度值。

  • 一旦找到了需要分割的物体的像素点,我们可以对这些像素点设定一些特定的值来表示。(例如:可以将该物体的像素点的灰度值设定为:‘0’(黑色),其他的像素点的灰度值为:‘255’(白色);当然像素点的灰度值可以任意,但最好设定的两种颜色对比度较强,方便观察结果)。

    Threshold simple example

阈值化的类型:

  • OpenCV中提供了阈值(threshold)函数: threshold 。

  • 这个函数有5种阈值化类型,在接下来的章节中将会具体介绍。

  • 为了解释阈值分割的过程,我们来看一个简单有关像素灰度的图片,该图如下。该图中的蓝色水平线代表着具体的一个阈值。

    Threshold Binary

阈值类型1:二进制阈值化

  • 该阈值化类型如下式所示:

    \texttt{dst} (x,y) =  \fork{\texttt{maxVal}}{if $\texttt{src}(x,y) > \texttt{thresh}$}{0}{otherwise}

  • 解释:在运用该阈值类型的时候,先要选定一个特定的阈值量,比如:125,这样,新的阈值产生规则可以解释为大于125的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于125的像素点的灰度值设定为0。

    Threshold Binary

阈值类型2:反二进制阈值化

  • 该阈值类型如下式所示:

    \texttt{dst} (x,y) =  \fork{0}{if $\texttt{src}(x,y) > \texttt{thresh}$}{\texttt{maxVal}}{otherwise}

  • 解释:该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,不过最后的设定值相反。(在8位灰度图中,例如大于阈值的设定为0,而小于该阈值的设定为255)。

    Threshold Binary Inverted

阈值类型3:截断阈值化

  • 该阈值化类型如下式所示:

    \texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if $\texttt{src}(x,y) > \texttt{thresh}$}{\texttt{src}(x,y)}{otherwise}

  • 解释:同样首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。(例如:阈值选取为125,那小于125的阈值不改变,大于125的灰度值(230)的像素点就设定为该阈值)。

    Threshold Truncate

阈值类型4:阈值化为0

  • 该阈值类型如下式所示:

    \texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if $\texttt{src}(x,y) > \texttt{thresh}$}{0}{otherwise}

  • 解释:先选定一个阈值,然后对图像做如下处理:1 像素点的灰度值大于该阈值的不进行任何改变;2 像素点的灰度值小于该阈值的,其灰度值全部变为0。

    Threshold Zero

阈值类型5:反阈值化为0

  • 该阈值类型如下式所示:

    \texttt{dst} (x,y) =  \fork{0}{if $\texttt{src}(x,y) > \texttt{thresh}$}{\texttt{src}(x,y)}{otherwise}

  • 解释:原理类似于0阈值,但是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。

    Threshold Zero Inverted

代码示范:

简单的代码如下。同样也可以在网站中 下载 以下代码。

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include 
#include 

using namespace cv;

/// 全局变量定义及赋值

int threshold_value = 0;
int threshold_type = 3;;
int const max_value = 255;
int const max_type = 4;
int const max_BINARY_value = 255;

Mat src, src_gray, dst;
char* window_name = "Threshold Demo";

char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
char* trackbar_value = "Value";

/// 自定义函数声明
void Threshold_Demo( int, void* );

/**
 * @主函数
 */
int main( int argc, char** argv )
{
  /// 读取一副图片,不改变图片本身的颜色类型(该读取方式为DOS运行模式)
  src = imread( argv[1], 1 );

  /// 将图片转换成灰度图片
  cvtColor( src, src_gray, CV_RGB2GRAY );

  /// 创建一个窗口显示图片
  namedWindow( window_name, CV_WINDOW_AUTOSIZE );

  /// 创建滑动条来控制阈值
  createTrackbar( trackbar_type,
                  window_name, &threshold_type,
                  max_type, Threshold_Demo );

  createTrackbar( trackbar_value,
                  window_name, &threshold_value,
                  max_value, Threshold_Demo );

  /// 初始化自定义的阈值函数
  Threshold_Demo( 0, 0 );

  /// 等待用户按键。如果是ESC健则退出等待过程。
  while(true)
  {
    int c;
    c = waitKey( 20 );
    if( (char)c == 27 )
      { break; }
   }

}


/**
 * @自定义的阈值函数
 */
void Threshold_Demo( int, void* )
{
  /* 0: 二进制阈值
     1: 反二进制阈值
     2: 截断阈值
     3: 0阈值
     4: 反0阈值
   */

  threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );

  imshow( window_name, dst );
}

解释:

  1. 先看一下整个程序的结构:

    • 先读取一副图片,如果是图片颜色类型是RGB3色类型,则转换成灰度类型的图像。转换颜色类型可以运用OpenCV中的 cvtColor<> 函数。

      src = imread( argv[1], 1 );
      
      /// 颜色类型从RGB 转换成灰度
      cvtColor( src, src_gray, CV_RGB2GRAY );
      
    • 然后创建一个窗口来显示该图片可以检验转换结果

      namedWindow( window_name, CV_WINDOW_AUTOSIZE );
      
    • 接着该程序创建两个滚动条来等待用户的输入:

      • 第一个滚动条作用:选择阈值类型:二进制,反二进制,截断,0,反0。
      • 第二个滚动条作用:选择阈值的大小。
      createTrackbar( trackbar_type,
                   window_name, &threshold_type,
                   max_type, Threshold_Demo );
      
      createTrackbar( trackbar_value,
                   window_name, &threshold_value,
                   max_value, Threshold_Demo );
      
    • 在这里等到用户拖动滚动条来输入阈值类型以及阈值的大小,或者是用户键入ESC健退出程序。

    • 无论何时拖动滚动条,用户自定义的阈值函数都将会被调用。

      /**
       * @自定义的阈值函数
       */
      void Threshold_Demo( int, void* )
      {
        /* 0: 二进制阈值
           1: 反二进制阈值
           2: 截断阈值
           3: 0阈值
           4: 反0阈值
         */
      
        threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
      
        imshow( window_name, dst );
      }
      

      就像你看到的那样,在这样的过程中,函数 threshold<> 会接受到5个参数:

      • src_gray: 输入的灰度图像的地址。
      • dst: 输出图像的地址。
      • threshold_value: 进行阈值操作时阈值的大小。
      • max_BINARY_value: 设定的最大灰度值(该参数运用在二进制与反二进制阈值操作中)。
      • threshold_type: 阈值的类型。从上面提到的5种中选择出的结果。

结果:

  1. 程序编译过后,从正确的路径中读取一张图片。例如,该输入图片如下所示:

    Threshold Original Image
  2. 首先,阈值类型选择为反二进制阈值类型。我们希望灰度值大于阈值的变暗,即这一部分像素的灰度值设定为0。从下图中可以很清楚的看到这样的变化。(在原图中,狗的嘴和眼睛部分比图像中的其他部分要亮,在结果图中可以看到由于反二进制阈值分割,这两部分变的比其他图像的都要暗。原理具体参见本节中反二进制阈值部分解释)

    Threshold Result Binary Inverted
  3. 现在,阈值的类型选择为0阈值。在这种情况下,我们希望那些在图像中最黑的像素点彻底的变成黑色,而其他大于阈值的像素保持原来的面貌。其结果如下图所示:

    Threshold Result Zero



from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/table_of_content_imgproc/table_of_content_imgproc.html#table-of-content-imgproc

你可能感兴趣的:(OpenCV)