一维线段树模板 (HDU 1166)解题报告

线段树是一种 二叉搜索树,与 区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。
对于线段树中的每一个非 叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是 平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。
使用线段树可以快速的查找某一个节点在若干条线段中出现的次数, 时间复杂度为O(logN)。而未优化的 空间复杂度为2N,因此有时需要离散化
让空间压缩。
一维线段树模板 (HDU 1166)解题报告_第1张图片
在ACM题目中,常用线段树解决不断改变的某段区间的和或最大,最小值等问题。 下面我们以杭电1166题为例子讲解线段树的应用。

敌兵布阵

                                                                      Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                                                                          Total Submission(s): 60090    Accepted Submission(s): 25432


Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 

Sample Input
 
    
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
 

Sample Output
 
    
Case 1: 6 33 59
/*
线段树通常由三个函数组成,分别是buildtree(建树),query(查询),update(更新)
*/
#include 
#include 
#include 
#include 
#include 
using namespace std;
const int MM=50000;//10^6
int num[MM<<2];

void buildtree(int l,int r,int id)   //建立编号为l-r的结点 结点编号为id 
{
    if(l==r)
    {
        scanf("%d",&num[id]);return;
    }
    else
    {
        int mid=(l+r)>>1;    //右移  除以(2^1) 
        buildtree(l,mid,id<<1);
        buildtree(mid+1,r,id<<1|1);  //乘以2 加1
	   
    }num[id]=num[id<<1]+num[id<<1|1];//父节点的值为两个子节点的和 
}


int query(int L,int R,int l,int r,int id)  //查询   L-R为查询的区间 
{
    if(L<=l&&R>=r) return num[id];       //找到该区间 
    
    else
    {
        int mid=(l+r)>>1; int res=0;
        
        if(L<=mid) res+=query(L,R,l,mid,id<<1);
        
        if(R>mid) res+=query(L,R,mid+1,r,id<<1|1);
        
        return res;
    }
    
}


void update(int pos,int e,int l,int r,int id)  //更新    pos代表位置信息 e则是改变的值  l-r则是代表此时更新的区间 id则是这个区间所在的结点号 
{
    if(l==r)   //找到那个位置 
    {
        num[id]+=e;return;
    }
    else
    {
        int mid=(l+r)>>1;
        
        if(pos<=mid)update(pos,e,l,mid,id<<1);   //在左结点这边 
        
        else if(pos>mid)update(pos,e,mid+1,r,id<<1|1);  //在右结点这边 
        
        num[id]=num[id<<1]+num[id<<1|1];
    }
}


int main()
{
    int t,n,cas,i,x,y;
    char str[10];
    scanf("%d",&t);
    for(cas=1;cas<=t;cas++)
    {
        printf("Case %d:\n",cas);
        scanf("%d",&n);
        buildtree(1,n,1);
        
        memset(str,0,sizeof str);
        
        while(scanf("%s",str))
        {
        	
            if(strcmp(str,"End")==0)break;
            else if(strcmp(str,"Add")==0)
            {
                scanf("%d %d",&x,&y);
                update(x,y,1,n,1);
            }
            
            else if(strcmp(str,"Sub")==0)
            {
                scanf("%d %d",&x,&y);
                update(x,-y,1,n,1);
            }
            
            else
            {
                scanf("%d %d",&x,&y);
                printf("%d\n",query(x,y,1,n,1) );
            }
            
        }//while
        
    }//for()
    
    return 0;
}

/*
这里有个注意点:
理论上线段树消耗的空间为2n-1,但是你递归建立的时候当前节点为r,
那么左右孩子分别是2*r,2*r+1,此时编译器并不知道递归已结束,因为你的结束条件是在递归之前的,
所以编译器会认为下标访问出错,也就是空间开小了,应该再开大2倍。
有时候可能你发现开2,3倍的空间也可以AC,那只是因为测试数据并没有那么大。
*/



你可能感兴趣的:(ACM-数据结构,ACM-算法与刷题)