敌兵布阵

Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 

Sample Input
 
   
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
 

Sample Output
 
   
Case 1: 6 33 59
树状数组:

如果给定一个数组,要你求里面所有数的和,一般都会想到累加。但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了。所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多。下面就讲一下什么是树状数组:

         一般讲到树状数组都会少不了下面这个图:

         敌兵布阵_第1张图片

         下面来分析一下上面那个图看能得出什么规律:

         据图可知:c1=a1,c2=a1+a2,c3=a3,c4=a1+a2+a3+a4,c5=a5,c6=a5+a6,c7=a7,c8=a1+a2+a3+a4+a5+a6+a7+a8,c9=a9,c10=a9+a10,c11=a11........c16=a1+a2+a3+a4+a5+.......+a16。

         分析上面的几组式子可知,当 i 为奇数时,ci=ai ;当 i 为偶数时,就要看 i 的因子中最多有二的多少次幂,例如,6 的因子中有 2 的一次幂,等于 2 ,所以 c6=a5+a6(由六向前数两个数的和),4 的因子中有 2 的两次幂,等于 4 ,所以 c4=a1+a2+a3+a4(由四向前数四个数的和)。

        (一)有公式:cn=a(n-a^k+1)+.........+an(其中 k 为 n 的二进制表示中从右往左数的 0 的个数)。

         那么,如何求 a^k 呢?求法如下:

int lowbit(int x)
{
     return x&(-x);   
}

         lowbit()的返回值就是 2^k 次方的值。

         求出来 2^k 之后,数组 c 的值就都出来了,接下来我们要求数组中所有元素的和。

         (二)求数组的和的算法如下:

         (1)首先,令sum=0,转向第二步;

         (2)接下来判断,如果 n>0 的话,就令sum=sum+cn转向第三步,否则的话,终止算法,返回 sum 的值;

         (3)n=n - lowbit(n)(将n的二进制表示的最后一个零删掉),回第二步。

          代码实现:

int Sum(int n)
{
    int sum=0;
    while(n>0)
    {
         sum+=c[n];
         n=n-lowbit(n);
    }   
    return sum;
}

         (三)当数组中的元素有变更时,树状数组就发挥它的优势了,算法如下(修改为给某个节点 i 加上 x ):

         (1)当 i<=n 时,执行下一步;否则的话,算法结束;

         (2)ci=ci+x ,i=i+lowbit(i)(在 i 的二进制表示的最后加零),返回第一步。

          代码实现:

void change(int i,int x)
{
     while(i<=n)
     {
          c[i]=c[i]+x;
          i=i+lowbit(i);
     }
}
本题代码如下:
#include 
#include 
#include 
using namespace std;
int a[50001];
char ch[10];
int t, n,e;
int low(int x)
{
    return x & (-x);
}
void add(int x,int y)
{
    while(x<=n)
    {
        a[x]+=y;
        x+=low(x);
    }
    return ;
}
int sum(int x)
{
    int sum=0;
    while(x>0)
    {
        sum+=a[x];
        x-=low(x);
    }
    return sum;
}
int main()
{
    int ee=1;
    scanf("%d",&t);
    while (t--) {
        printf("Case %d:\n",ee++);
        memset(a,0,sizeof(a));
        scanf("%d",&n);
        for (int i = 1; i <=n; i++) {
            cin >> e;
            add(i,e);
        }
        while (1) {
            scanf("%s",ch);
            if (ch[0] == 'Q') {
                  int x,y;
                  scanf("%d %d",&x,&y);
                  printf("%d\n",sum(y)-sum(x-1));
            }
             if (ch[0] == 'A') {
                  int x,y;
                  scanf("%d %d ",&x,&y);
                  add(x,y);
            }
            if (ch[0] == 'S') {
                  int x,y;
                  scanf("%d %d ",&x,&y);
                  add(x,-y);
            }
            if (ch[0] == 'E') {
                break;
            }
        }
    }
    return 0;
}

你可能感兴趣的:(树状数组)