- matlab基于SVM的手写字体识别,svm 基于LIBSVM的matlab手写字体识别 AI-NN-PR 人工智能/神经网络/深度学习 276万源代码下载- www.pudn.com...
傅奇
文件名称:svm下载收藏√[54321]开发工具:matlab文件大小:126KB上传时间:2017-05-15下载次数:0详细说明:基于LIBSVM的matlab手写字体识别-AhandwrittenfontrecognitionbasedonSVM文件列表(点击判断是否您需要的文件,如果是垃圾请在下面评价投诉):chapter19\Chapter_CharacterRecognitionUsi
- 【全网最低价】司守奎《数学建模算法与应用》第三版pdf+数学建模资料(非常详细的算法学习和路线)小白推荐
阿贵学长
数学建模学习算法matlab性能优化深度学习
1.《数学建模算法与应用》主要内容包括时间序列、支持向量机、偏最小二乘面归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。文章末尾有电子版PDF文件链接2.算法学习流程及详细过程主要算法:工具箱推荐遗传算法-beatxbx工具箱,求解速度很快,并行计算LIBSVM-比MATLAB自带工具箱好用得多yamlip,特别推荐,统一优化求解工具箱由于文件很多,学长
- matlab中的分类工具箱svm,MATLAB实现多分类和libsvm工具箱的安装使用详解
菩提流支
首先告诉大家MATLAB现在可以实现多类分类的问题!但是需要借助工具箱!下面介绍的是台湾林智仁教授的libsvm工具箱在MATLAB中的安装和使用:安装环境:Win7、MicrosoftVisualStudio2010MATLAB版本:R2010b编译器版本:MicrosoftVisualC++2010安装过程:网站去下载最新的SVM软件,找到DownloadLIBSVM,点击zipfile下载,
- 基于支持向量机SVM的风电场NWP数据预测,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab数据挖掘
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的风电场NWP预测结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的采油机故障诊断,Libsvm故障的详细诊断,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab分类
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的采油机故障识别代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线
- 基于粒子群改进的支持向量机SVM的情感分类识别,pso-svm情感分类识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的情感分类预测代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的分类预测,基于SVM的雷击故障识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的雷击故障分类预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SV
- 基于k折交叉验证的支持向量机SVM的多分类预测,SVM的详细原理,SVM工具箱详解及注意事项
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机分类算法K折交叉验证
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM多分类预测,基于k折交叉验证的支持向量机SVM的多分类预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88782939SVM应用实例,基于SVM多分类预测,基于k折交叉验证的
- sklearn.svm.SVC 参数说明
人鱼线
机器学习
sklearn中的SVC函数本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS:libsvm中的二次规划问题的解决算法是SMO)。sklearn.svm.SVC(C=1.0,kernel='rbf',degree=3,gamma='auto',coef0=0.0,shrinking=True,probability=False,tol=0.001,cache_size
- macOS 10.13.6下安装libsvm库
3ni
libsvm官网下载地址找到DownloadLIBSVM点击zipfile或者tar.gz即可进行下载下载完后解压,进入主目录,里面有README文件,里面是使用说明(都是英文...)先进主目录,就是解压完后的文件夹(libsvm-3.23),然后在shell中输入make命令,构建过程中会有警告(Warning),不用管,结束后再进入Python子目录,然后又是make,结束后会在主目录下生成l
- 西瓜书第六章课后习题
lammmya
6.1试证明样本空间中任意点x到超平面(w,b)的距离为式(6.2)。画了个图在纸上进行了证明,感觉这样自会通俗易懂些。6.2试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。导入相应的包主体函数:设置参数,输出。数据特征可视化输出结果以及数据特征可视化最终结果如下图结果表明,使用线性核和高斯训练核的支持向量实际是一样的(两条线重合),且数量相同
- 基于交叉验证和网格优化的SVM分类算法,SVM的详细原理,SVM工具箱使用说明
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机分类算法交叉验证网格优化
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于交叉验证和网格优化的SVM分类算法,混淆矩阵图(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88725374SVM应用实例,基于交叉验证和网格优化的SVM分类算法代码结果分析展望支持
- 支持向量机SVM详细原理,Libsvm工具箱详解,svm参数说明,svm应用实例,神经网络1000案例之15
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习神经网络matlab
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的股票价格预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的
- 基于自定义权重的支持向量机,基于自定义权重的SVM
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习自定义权重SVM
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于自定义权重的支持向量机,基于自定义权重的SVM资源-CSDN文库https://download.csdn.net/download/abc991835105/88637048SVM应用实例,基于支持向量机SVM的港口分类代码结果分析展望支持向量机SVM的详细原理SVM的
- 基于支持向量机SVM的界面黏附能预测,SVM的详细原理,SVM工具箱使用说明
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的界面黏附能预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88647878SVM应用实例,基于支持向量机SVM的界面黏附能预测代码结果分析展望支持向量机SVM的详
- SVM的详细原理,SVM工具箱使用说明,基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习油温油压预测
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测资源-CSDN文库https://download.csdn.net/download/abc991835105/88637069SVM应用实例,基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测代码结果分
- 基于SVM的冷却剂流量预测,基于支持向量机SVM的冷却剂流量预测
神经网络机器学习智能算法画图绘图
100种启发式智能算法及应用支持向量机SVM神经网络支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的冷却剂流量预测,基于支持向量机SVM的冷却剂流量预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88611090SVM应用实例,基于SVM的冷却剂流量预测,基于支持向量机S
- 基于支持向量机SVM的港口分类,SVM原理,SVM工具箱详解
神经网络机器学习智能算法画图绘图
支持向量机SVM100种启发式智能算法及应用支持向量机分类算法
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的港口分类(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88636296SVM应用实例,基于支持向量机SVM的港口分类代码结果分析展望支持向量机SVM的详细原理SVM
- 基于SVM的用气量预测,基于支持向量机SVM的用气量预测
神经网络机器学习智能算法画图绘图
支持向量机SVM100种启发式智能算法及应用支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的用气量预测,基于支持向量机SVM的用气量预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88611067SVM应用实例,基于SVM的用气量预测,基于支持向量机SVM的用气量
- 基于SVM的鸟鸣识别,语谱分析
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习鸟鸣识别语谱分析
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的鸟鸣识别,语谱分析(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88610830SVM应用实例,基于SVM的鸟鸣识别,语谱分析代码结果分析展望支持向量机SVM的详细原理SVM
- 【机器学习】libsvm 简单使用示例(C++)
十年一梦实验室
机器学习c++支持向量机人工智能开发语言
libsvm简单使用demo一、libsvm使用说明二、svm.h源码#ifndef_LIBSVM_H//如果没有定义_LIBSVM_H宏#define_LIBSVM_H//则定义_LIBSVM_H宏,用于防止重复包含#defineLIBSVM_VERSION317//定义一个宏,表示libsvm的版本号#ifdef__cplusplus//如果是C++编译器extern"C"{//则使用C语言的
- Libsvm中grid.py文件的解读
Kelly_Ai_Bai
python
1.导入相关文件这里重点讲一下__all__=['find_parameters']:_all__=['find_parameters']是Python中用于定义模块级别的变量__all__的语法,__all__是一个包含模块中应该被公开(即可以通过frommoduleimport*导入)的变量名的列表__all__是一个约定俗成的变量名,用于指定在使用frommoduleimport*语句时,应
- Matlab 2020b 中安装与使用libsvm
Kelly_Ai_Bai
matlab开发语言svm
一、下载与安装libsvm1.下载libsvm下载地址:https://www.csie.ntu.edu.tw/~cjlin/libsvm/下载后的结果:对该压缩包进行解压,最好解压到matlab安装路径中的toolbox文件夹下,如下图所示:注意:这里是matlab2020b和libsvm3.32(请注意版本的差异问题,版本的不一致或许可能会造成安装出现问题)2.设置路径在matlab2020b
- 如何在Matlab 2020b 中运行BAT文件中的python脚本指令
Kelly_Ai_Bai
python机器学习开发语言batch
这篇文章我将会阐述如何来使用libsvm进行模型的训练以及结果的预测。关于要运行的BAT文件及其内容介绍下面这是我的BAT文件(train_pixels)以及文件中的内容,可以看到BAT文件中的内容是运行python脚本的指令。后缀为.BAT的文件是一个批处理文件,通常用于批量执行一系列命令。此处的train_pixels.BAT文件中就是运行Python脚本。在MATLAB中运行外部的Batch
- 时间序列预测 | SVM时间序列预测建模,单步、多步(Python)
码农腾飞
时间序列预测(TSF)机器学习模型(ML)1024程序员节时间序列建模
(1)代码解读scikit-learn提供了3种支持向量机(SVM)的回归器:sklearn.svm.SVR、sklearn.svm.NuSVR和sklearn.svm.LinearSVR:(a)SVR(SupportVectorRegression)说明:SVR是基于libsvm的支持向量回归的实现。核函数:可以使用多种核函数,例如线性、多项式、RBF(径向基函数)和sigmoid等。主要参数:
- linux使用for命令行,Linux Bash代码 利用for循环实现命令的多次执行
深圳创业导师
linux使用for命令行
LinuxBash代码[
[email protected]]$for((i=0;i&2;exit1;fisource/etc/p...Linux:-bash:***:commandnotfoundLinux:-bash:***:commandnotfound,系统很多命令都用不了,均提示没有此命令.突然之间lin
- python实现svm和使用f-score
狼无雨雪
使用方法使用python语言实现对于支持向量机(SVM)特征选择的实现,特征选择算法为f-score,该程序的主要有点是可输入文件囊括了csv,libsvm,arff等在序列分类的机器学习领域常用到的格式,其中csv:最后一列为class,libsvm:第一列为class,arff:通常最后一列为类别,其中csv和libsvm中不存在开头,直接是使用的数据。pythontrain.py-i1.cs
- 基于支持向量机SVM的时间序列数据训练测试和预测未来数据,LIBSVM工具箱详解
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习训练和预测未来数据
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的时间序列数据训练测试和预测未来数据(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88547530SVM应用实例,基于支持向量机SVM的时间序列数据训练测试和预测未来
- matlab libsvm分类,matlab 基于 libsvm工具箱的svm分类遇到的问题与解决
Daidaiaici
matlablibsvm分类
最近在做基于无线感知的身份识别这个工作,在后期数据处理阶段,需要使用二分类的方法进行训练模型。本身使用matlab做,所以看了一下网上很多都是使用libsvm这个工具箱,就去下载了,既然用到了想着就把这个东西梳理一下,顺便记录一下过程中的遇到的问题。1、Libsvm下载与安装Libsvm这个工具箱是台湾大学林智仁(LinChih-Jen)教授等开发的一套基于SVM的模式识别的软件包,网上也有详细的
- 基于支持向量机SVM的面部表情分类预测
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类人工智能matlab
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的面部表情分类预测代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟