- [VC] 检测AVX系列指令集的支持级别(AVX、AVX2、F16C、FMA、FMA4、XOP)
zyl910
#All-所有SIMDc汇编functionreferenceapplicationnull
从2011年的SandyBridge微架构处理器开始,现在支持AVX系列指令集的处理器越来越多了。本文探讨如何用VC编写检测AVX系列指令集的程序,并利用了先前的CPUIDFIELD方案。一、AVX系列指令集简介SSE5指令:SSE5是一个纸面上的指令集,并没有最终实现,AMD在2007年8月公布SSE5指令集规范,在2009年5月AMD推出了XOP,FMA4以及CVT16来取代SSE5指令。AV
- MyBatis最佳实践:注解开发
苏-言
mybatisjavaspring
注解:@Insert:添加@Update:修改@Delete:删除@Select:查询@Result:实现结果集封装@Results:可以和@Reslult一起使用,封装多个结果集@One:实现一对一和多对一的结果集封装@Many:实现一对多结果集封装MyBatis注解不能实现动态SQL使用:SqlMapConfig.xml配置文件编写注解:增删改查:@Select("select*fromuse
- XML解析
千禧年@
xml前端html
一、XML概述1,什么是XML?XML即为可扩展的标记语言(eXtensibleMarkupLanguage)XML是一套定义语义标记的规则,这些标记将文档分为许多部件并对这些部件加以标识2.XML和HTML不同之处XML主要用于说明文档的主题,而HTML侧重描述文本的显示格式。XML文档数据和格式分离,文档=文档数据+文档结构+文档样式XML是一种元标记语言,用户可以自己定义标记集,从而使数据具
- 使用 Python 和 scikit-learn 实现 KNN 分类:以鸢尾花数据集为例
弥树子
pythonscikit-learn分类
在机器学习的世界里,K-NearestNeighbors(KNN)算法是一种简单而强大的分类方法。它基于一个直观的想法:相似的数据点往往属于同一类别。本文将通过Python的scikit-learn库实现KNN分类,以经典的鸢尾花数据集为例,展示从数据加载到模型评估的完整流程。1.KNN算法简介KNN是一种监督学习算法,主要用于分类和回归任务。它的工作原理非常简单:对于一个新的数据点,算法会查找训
- machine learning knn算法之使用KNN对鸢尾花数据集进行分类
知识鱼丸
machinelearning机器学习算法分类
通过导入必要的scikit-learn导入必要的库,加载给定的数据,划分测试集和训练集之后训练预测和评估即可具体代码如下:importnumpyasnpfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportStandardS
- [论文笔记] llama-factory 微调qwen2.5、llama3踩坑
心心喵
论文笔记深度学习人工智能
一、bug1、pre-tokenize的时候,会OOM解决:在yaml文件中添加streaming参数#tokenizestreaming:Truemax_steps:10000https://github.com/hiyouga/LLaMA-Factory/blob/3a023bca2a502810a436cfba7708df164754ea62/src/llamafactory/hparams
- GSEA - Gene set enrichment analysis 基因集富集 | ORA - Over-Representation Analysis 分析原理与应用...
weixin_30294709
python数据库人工智能
R批量做GSEA分析还没有官方的包,但是clusterprofiler可以做,它调用了最新的gfsea包。GeneSetTestingforRNA-seq-fgsea教程RNA-seq是利器,大部分做实验的老板手下都有大量转录组数据,所以RNA-seq的分析需求应该是很大的(大部分的生信从业人员应该都差不多要沾边吧)。普通的转录组套路并不多,差异表达基因、富集分析、WGCNAnetwork以及一些
- 分布式微服务系统架构第88集:kafka集群
掘金-我是哪吒
分布式微服务系统架构kafka架构
使用集群最大的好处是可以跨服务器进行负载均衡,再则就是可以使用复制功能来避免因单点故障造成的数据丢失。在维护Kafka或底层系统时,使用集群可以确保为客户端提供高可用性。需要多少个broker一个Kafka集群需要多少个broker取决于以下几个因素。首先,需要多少磁盘空间来保留数据,以及单个broker有多少空间可用。如果整个集群需要保留10TB的数据,每个broker可以存储2TB,那么至少需
- 菜鸟之路Day09一一集合进阶(二)
Blue.ztl
菜鸟之路开发语言java
菜鸟之路Day09一一集合进阶(二)作者:blue时间:2025.1.27文章目录菜鸟之路Day09一一集合进阶(二)0.概述1.泛型1.1泛型概述1.2泛型类1.3泛型方法1.4泛型接口1.5泛型通配符2.Set系列集合2.1遍历方式2.2HashSet2.3LinkedHashSet2.4TreeSet0.概述内容学习至黑马程序员BV17F411T7Ao,无论如何,今天是值得铭记的一天,我们终
- 基于深度学习的遥感目标检测系统:UI界面、R-CNN模型与数据集准备
2025年数学建模美赛
R-CNN检测系统人工智能深度学习r语言cnnpythonui目标检测
一、引言遥感图像中的目标检测在很多领域,如环境监测、土地利用、城市规划、农业资源监测等方面有着广泛应用。遥感图像具有高分辨率和丰富的空间信息,但同时也带来了目标检测中的许多挑战,特别是在目标尺度变化、遮挡和复杂背景的情况下。因此,采用深度学习技术,尤其是卷积神经网络(CNN)和区域卷积神经网络(R-CNN),在遥感图像目标检测中取得了显著的成果。本文将详细介绍基于深度学习的遥感目标检测系统,使用R
- 使用Bert+BiLSTM+CRF训练 NER任务
CHEN_RUI_2200
机器学习bert人工智能深度学习
使用的数据集在这里E-CommercialNERDataset/电商NER数据集_数据集-阿里云天池针对面向电商的命名实体识别研究,我们通过爬取搜集了淘宝商品文本的标题,并标注了4大类,9小类的实体类别。具体类型及实体数量如下针对面向电商的命名实体识别研究,我们通过爬取搜集了淘宝商品文本的标题,并标注了4大类,9小类的实体类别。具体类型及实体数量如下:每个文件数据格式相同,都为根据BIschema
- Silero VAD 教程
褚艳影Gloria
SileroVAD教程silero-vadSileroVAD:pre-trainedenterprise-gradeVoiceActivityDetector项目地址:https://gitcode.com/gh_mirrors/si/silero-vad1.项目目录结构及介绍该开源项目silero-vad的目录结构如下:.├──datasets#包含示例数据集└──examples#存放示例代码
- 使用R语言绘制日历热图
CyberXZ
r语言开发语言R语言
使用R语言绘制日历热图日历热图是一种可视化工具,用于显示时间序列数据的模式和趋势。这种图表通常使用颜色编码来表示数据值的大小,从而使我们能够快速识别出高值和低值。在R语言中,我们可以使用ggplot2包来创建漂亮且可定制化的日历热图。首先,确保已经安装了ggplot2包。如果没有安装,可以使用以下命令进行安装:install.packages("ggplot2")接下来,我们将使用一个示例数据集来
- 【全解析 PTA】浙大版《Python 程序设计》题目集-第三章_len(‘3 11 2018‘(1)
2401_84010901
程序员pythonwindows开发语言
b[:]##单独一个冒号,代表从头取到尾,步长默认为1b[::]##单独两个冒号一样代表从头取到尾,步长默认为1b[::-1]##注意,两个冒号后面是步长,步长为1,故应从右往左取8.列表lst=[12,-5,-22,-10,-26,35,0,49,3,-21],lst[::-1]的结果是[-21,3,49,0,35,-26,-10,-22,-5,12]。T9.列表lst=[12,-5,-22,-
- Xilinx AXI DMA驱动与Petalinux集成实战指南
Nate Hillick
本文还有配套的精品资源,点击获取简介:AXIDMA是Xilinx为FPGA设计的高性能DMA控制器,用于片上存储器与外设间高速数据传输。本项目文件集包含了AXIDMA驱动配置文件,用于Petalinux环境下的集成与配置。介绍AXIDMA基本概念、组件、集成步骤、DMA驱动程序、应用场景以及配置文件解析,旨在帮助开发者在嵌入式Linux系统中高效利用AXIDMA。1.XilinxAXIDMA控制器
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
灵封~
scikit-learn线性回归python
一、导入必要的库importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLinearRegressionfromsklearn.metricsimportmean_squared_error,r2_score二、加载自定义数据集#创建自定义数据集#假设我们有一个简单
- 使用scikit-learn中的KNN包实现对鸢尾花数据集的预测。
灵封~
scikit-learn机器学习人工智能
导入必要的库和数据集#导入鸢尾花数据集fromsklearn.datasetsimportload_iris#数据化可视包importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportMinMaxScaler,StandardScalerfromsklearn.neig
- 基于R-CNN深度学习的无人机目标检测系统:数据集、模型和UI界面的完整实现
2025年数学建模美赛
R-CNN检测系统深度学习cnn无人机计算机视觉目标检测人工智能
摘要随着无人机技术的迅猛发展,无人机在军事、农业、环境监测等多个领域的应用日益广泛。无人机目标检测系统的建设成为提升无人机自主飞行和环境感知能力的重要环节。本文将详细介绍如何构建一个基于深度学习的无人机目标检测系统,采用R-CNN(区域卷积神经网络)算法,通过用户界面设计和数据集处理,实现高效的目标检测功能。通过本项目,旨在为无人机目标检测提供一种可行的解决方案,并提高其在复杂环境下的工作效率。目
- 无人机低成本集群技术实现详解
无人机技术圈
无人机技术无人机
在现代科技的迅猛发展中,无人机技术已广泛应用于军事侦察、环境监测、农业植保、物流配送等多个领域。其中,无人机集群技术作为提高任务效率、降低成本的重要手段,正受到越来越多的关注。本项目旨在研发一套低成本无人机集群系统,通过优化关键技术、设计合理的无人机平台、实现高效的集群编队与协同,以及智能化的自主控制,达到提升任务执行效率、降低总体成本的目标。具体目标包括:开发出高性价比的无人机单体、实现灵活的集
- AI编程:记一次小程序开发的踩坑之旅
京河小蚁
AI编程微信小程序cursorAI编程微信小程序
今天是个有趣的开发日,遇到了几个典型的小程序开发问题,分享给大家,希望能帮助到遇到类似问题的开发者。一、小程序名称备案那些事开发完小程序后,第一个坎就是名称备案。原本取名为"Moodo",寓意是"Mood"(心情)+“do”(做),想表达记录心情、管理情绪的理念。但遗憾的是没有通过备案。这提醒我们:小程序命名要避免使用纯英文不要使用过于宽泛的词语最好能体现小程序的核心功能避免与知名品牌相近的名称二
- html手机端富文本,移动端富文本踩坑
weixin_39608657
html手机端富文本
最近在做一个vue的项目。之前的前端同事离职了,和女朋友去云南潇洒去了,剩下我一个苦逼坐在电脑前哒哒哒敲代码。刚刚接手就开始做移动端富文本编辑器的需求。主管说压了半个月,尽快做出来。在网上找了不少编辑器,前段时间做过react的后台项目,用了百度的编辑器。功能很多很强,遗憾的是ios不支持flash,在移动端并不适用。因为要兼容ios和Android,而且还要在vue的项目中使用,在网上找了很多编
- 前端js变量踩坑,部分手机浏览器不支持let、const
weixin_34244102
前端python移动开发ViewUI
2019独角兽企业重金招聘Python工程师标准>>>浏览器通过userAgent判断机型是Android还是iOS,很简单的几行代码,总有iOS用户手机判断不出来。刚开始总以为是判断的错误,优化了好几版,鉴于身边一直没有真机,终是治标不治本,今日偶遇真机,恍然大悟。。。var才是简单js的王道,引以为鉴转载于:https://my.oschina.net/AmosWang/blog/301786
- 自定义数据集使用框架的线性回归方法对其进行拟合
〖是♂我〗
线性回归算法回归
代码:#导入必要的库importtorchimportnumpyasnpimportmatplotlib.pyplotasplt#定义数据集:二维数据,其中第一列是特征x,第二列是目标值ydata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0.4,3
- 使用 PyTorch 实现逻辑回归:从数据到模型保存与加载
弥树子
pytorch逻辑回归人工智能
在机器学习中,逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将通过一个简单的示例,展示如何使用PyTorch框架实现逻辑回归模型,从数据准备到模型训练、保存和加载,最后进行预测。1.数据准备逻辑回归的核心是通过学习数据中的特征与标签之间的关系来进行分类。在本示例中,我们手动创建了一个简单的二维数据集,包含两类数据点。第一类数据点的标签为0,第二类数据点的标签为1。class1_point
- 【机器学习】 自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
加德霍克
tensorflow逻辑回归人工智能python作业
一、使用tensorflow框架实现逻辑回归1.数据部分:首先自定义了一个简单的数据集,特征X是100个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。tensorflow框架不需要numpy数组转换为相应的张量,可以直接在模型中使用数据集。2.模型定义部分:方案1:model=tf.keras.Sequential([tf.keras.layers.Dense(1,input_sh
- 实验踩坑 flash_attn_2_cuda undifiend symol
崩溃李
linux
报错RuntimeError:Failedtoimporttransformers.models.llama.modeling_llamabecauseofthefollowingerror(lookuptoseeitstraceback):…/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.s
- Vue2:父子组件间参数传递 - 单项传递和双向绑定
我是飞鸟呀
Vue前端javascript开发语言
1、单向传递:在之前的经验中,数据通常都是从父组件通过prop单项传递给子组件,供子组件使用,但是并不修改。2、双向传递2.1子组件修改后通过事件触发传递给父组件在Vue2踩坑记录:父子间参数传递,不要尝试修改计算属性,可能无法实现响应式一文中,父组件通过prop传递给子组件,子组件接收后拷贝一份,在子组件内部修改,修改完成后,通过$emit事件触发,再将修改后的数据传递给父组件使用;2.2通过.
- 传统企业数字化转型:ERP的不可或缺的角色
javascript
随着科技的飞速发展,数字化转型已成为传统企业持续发展和保持竞争力的必然选择。然而,在进行数字化转型的过程中,许多企业常常会忽视ERP系统的建设与完善。事实上,ERP在企业的数字化进程中扮演着至关重要的角色,是实现企业全面数字化的基础和关键。首先,让我们理解什么是ERP。ERP是一种集成的管理信息系统,它集财务、人力资源、采购、生产、销售等各个模块于一体,为企业提供了一个统一的、全面的信息管理平台。
- .NET 9 增强 OpenAPI 规范,不再内置swagger
沧黎
.net
在.NET9的更新中,微软增强了原生OpenAPI。这一变化表明.NET正在更加拥抱开放标准,同时让开发者体验更加轻松高效。本文将探讨为何进行这一更改、OpenAPI的优势,以及如何在.NET9中使用OpenAPI。为什么不再内置Swagger?1.标准化的需求Swagger是OpenAPI规范的早期实现,虽然功能强大,但它逐渐被视为工具集的一部分,而非行业标准。转向原生OpenAPI支持意味着.
- 菜鸟BUG之常见异常(一)
苏白辛
菜鸟BUGbug数据库java
雷声炸响,天地倾斜,海啸山崩,黎明前的曙光迟迟不现,群魔乱舞霍乱人间,有仙师集群英之心血,持剑出山,剑斩群魔,终于仙巅同最后一大魔同归于尽,然有人的江湖便有魔,为警示后人,群贤集巨力书群魔以息,吾初入江湖,不懂是非挫折,对错难学,借此抄录,以备他日与同道之友交流。目录一、空指针异常1、我是谁2、实例说明3、解决避免1)检查2)使用Optional类3)默认值4)优先使用String.valueOf
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1