目录
- 1.中间式子&常用技巧
- 2.gcd相关
- 3.d相关(d是约数个数函数)
- 4.mu相关(mu是莫比乌斯函数)
- 5.sigma相关(sigma是约数和函数)
- 6.因子相关
- 7.一些求和
- 更新中...
@
1.中间式子&常用技巧
\[[n==1]=\sum_{d|n}\mu (d)\]
这个式子用来替换条件式,从而降低复杂度
\[\sum_{i=1}^n\sum_{j=1}^{[\frac ni]}f(i)=\sum_{i=1}^n\sum_{j=1}^{[\frac ni]}f(j)\]
被加数可以任意以\(i\)或\(j\)作为索引
\[\sum_{i=1}^n\sum_{j=1}^{[\frac ni]}f(ij)*g(i)*h(j)=\sum_{k=1}^nf(k)*\sum_{d|k}g([\frac kd])h(d)\]
令\(k=ij\),然后枚举\(k\)。这里的\(i\)可以不从1枚举到n,可以是任意数,前提是保证后面的d和i性质一样(比如i是[1,n]范围内的质数,那么d|k且d是质数),且计算时保证关于i的函数和关于d的函数是同一性质(还是刚才的例子,式子左边是g(i),右边以d作为自变量的也应该是g而不应该是h,但如果i是顺序从1枚举到n则没有这个限制)
2.gcd相关
\[\sum_{i=1}^{n}\sum_{j=1}^n[gcd(i,j)==x]=2*pre\phi([\frac nx]) -1\]
\[\sum_{i=1}^{n}\sum_{j=1}^m[gcd(i,j)==x]=\sum_{d=1}^{[\frac nx]}\left( \mu(d)*[\frac {n}{dx}]*[\frac {m}{dx}]\right)\]
\[\sum_{i=1}^{n}\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^n\left(2d*pre\phi[\frac nx]-d\right)\]
\[\sum_{i=1}^{n}\sum_{j=1}^mgcd(i,j)=\sum_{x=1}^{n}\left(x*\sum_{d=1}^{[\frac nx]}\left( \mu(d)*[\frac {n}{dx}]*[\frac {m}{dx}]\right)\right)\]
\[\prod_{i=1}^n\prod_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}=\prod_{i=1}^n\prod_{j=1}^n\frac{ij}{gcd(i,j)^2}=(n!)^{2n}*\left(\prod_{x=1}^nx^{2pre\phi([\frac nx])-1}\right)^{-2}\]
可能需要欧拉定理,注意乘法逆元的使用
3.d相关(d是约数个数函数)
\[d(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\]
\[\sum_{i=1}^n\sum_{j=1}^md(i*j)= \sum_{d=1}^n\left(\mu(d)*pred([\frac nd])*pred([\frac md])\right)\]
4.mu相关(mu是莫比乌斯函数)
\[\sum_{i=1}^n\sum_{j=1}^{[\frac mi]}ij\mu(i)=1\]
5.sigma相关(sigma是约数和函数)
\[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))=\sum_{x=1}^n\sigma(x)\sum_{d=1}^{[\frac nx]}\left( \mu(d)*[\frac {n}{dx}]*[\frac {m}{dx}]\right)\]
\[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))*[\sigma(gcd(i,j))<=a]=\sum_{k=1}^n[\frac {n}{k}][\frac {m}{k}]g(k),其中g(k) =\sum\limits_{d|k}\sigma(d)*[\sigma(d)<=a]\mu([\frac kd])\]
这里分块,然后\(g(k)\)的区间和用线段树维护,每次\(a\)修改,用线段树给\(g(k)\)修改
6.因子相关
\[f(x)=\sum\limits_{i=1}^{[sqrt(x)]}\mu(i)*[\frac{x}{i^2}]\]
[1,x]范围内所有数不含平方因子的数的数量
7.一些求和
\[\sum_{i=1}^ni^3=\sum_{i=1}^n\sum_{j=1}^nij=\left(\frac {n(n+1)}2 \right)^2\]
\[\sum_{i=1}^ni^2=\frac {n(n+1)(2n+1)}2\]
上面这两个是伯努利多项式,暂时还没学