背景:
需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新broadcast的用法,于是就这几天进行了反复测试。经过了一下两个测试::Spark Streaming更新broadcast、Spark Structured Streaming更新broadcast。
1)Spark Streaming更新broadcast(可行)
def sparkStreaming(): Unit = { // Create a local StreamingContext with two working thread and batch interval of 1 second. // The master requires 2 cores to prevent a starvation scenario. val conf = new SparkConf().setMaster("local[*]").setAppName("NetworkWordCount") val ssc = new StreamingContext(conf, Seconds(15)) // Create a DStream that will connect to hostname:port, like localhost:9999 val lines = ssc.socketTextStream(ipAddr, 19999) val mro = lines.map(row => { val fields = row.split(",") Mro(fields(0), fields(1)) }) val cellJoinMro = mro.transform(row => { if (1 < 3) { println("更新broadcast..." + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date())) BroadcastWrapper.update(ssc.sparkContext) } var broadcastCellRes = BroadcastWrapper.getInstance(ssc.sparkContext) row.map(row => { val int_id: String = row.int_id val rsrp: String = row.rsrp val findResult: String = String.join(",", broadcastCellRes.value.get(int_id).get) val timeStamps: String = String.join(",", findResult) CellJoinMro(int_id, rsrp, timeStamps) }) }) cellJoinMro.print() ssc.start() // Start the computation ssc.awaitTermination() // Wait for the computation to terminate } import org.apache.spark.SparkContext import org.apache.spark.broadcast.Broadcast object BroadcastWrapper { @volatile private var instance: Broadcast[Map[String, java.util.List[String]]] = null private val baseDir = "/user/my/streaming/test/" def loadData(): Map[String, java.util.List[String]] = { val files = HdfsUtil.getFiles(baseDir) var latest: String = null for (key <- files.keySet) { if (latest == null) latest = key else if (latest.compareTo(key) <= 0) latest = key } val filePath = baseDir + latest val map = HdfsUtil.getFileContent(filePath) map } def update(sc: SparkContext, blocking: Boolean = false): Unit = { if (instance != null) instance.unpersist(blocking) instance = sc.broadcast(loadData()) } def getInstance(sc: SparkContext): Broadcast[Map[String, java.util.List[String]]] = { if (instance == null) { synchronized { if (instance == null) { instance = sc.broadcast(loadData) } } } instance } } import java.io.{BufferedReader, InputStreamReader} import java.text.SimpleDateFormat import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.hadoop.fs.FileSystem import scala.collection.mutable object HdfsUtil { private val sdf = new SimpleDateFormat("yyyy-MM-dd 00:00:00") def getFiles(path: String): mutable.Map[String, String] = { val fileItems = new mutable.LinkedHashMap[String, String] val fs = FileSystem.get(new Configuration()) val files = fs.listStatus(new Path(path)) var pathStr: String = "" for (file <- files) { if (file.isFile) { pathStr = file.getPath().getName() fileItems.put(pathStr.split("/")(pathStr.split("/").length - 1), pathStr) } } fs.close() fileItems } def getFileContent(filePath: String): Map[String, java.util.List[String]] = { val map = new mutable.LinkedHashMap[String, java.util.List[String]] val fs = FileSystem.get(new Configuration()) val path = new Path(filePath) if (fs.exists(path)) { val bufferedReader = new BufferedReader(new InputStreamReader(fs.open(path))) var line: String = null line = bufferedReader.readLine() while (line != null) { val fields: Array[String] = line.split(",") val int_id: String = fields(0) val date = new java.util.Date(java.lang.Long.valueOf(fields(2))) val time = sdf.format(date) System.out.println(line + "(" + time + ")") if (!map.keySet.contains(int_id)) map.put(int_id, new java.util.ArrayList[String]) map.get(int_id).get.add(time) line = bufferedReader.readLine() } map.toMap } else { throw new RuntimeException("the file do not exists") } } }
测试日志:
18/11/19 16:50:15 INFO scheduler.DAGScheduler: Job 2 finished: print at App.scala:59, took 0.080061 s ------------------------------------------- Time: 1542617415000 ms ------------------------------------------- CellJoinMro(2,333,2018-11-05 00:00:00) 。。。。 18/11/19 16:50:15 INFO storage.BlockManagerInfo: Removed input-0-1542617392400 on 10.60.0.11:1337 in memory (size: 12.0 B, free: 456.1 MB) 》》》》》》》》》》》》》》》》此时路径上传新资源文件》》》》》》》》》》》》》》》》》》》》》》 更新broadcast...2018-11-19 16:50:30 。。。 1,111,1541433600000(2018-11-06 00:00:00) 2,222,1541433600000(2018-11-06 00:00:00) 3,333,1541433600000(2018-11-06 00:00:00) 18/11/19 16:50:30 INFO memory.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 688.0 B, free 456.1 MB) 。。 18/11/19 16:50:30 INFO scheduler.JobScheduler: Starting job streaming job 1542617430000 ms.0 from job set of time 1542617430000 ms ------------------------------------------- Time: 1542617430000 ms ------------------------------------------- 18/11/19 16:50:30 INFO scheduler.JobScheduler: Finished job streaming job 1542617430000 ms.0 from job set of time 1542617430000 ms 。。。。 18/11/19 16:50:32 WARN storage.BlockManager: Block input-0-1542617432400 replicated to only 0 peer(s) instead of 1 peers 18/11/19 16:50:32 INFO receiver.BlockGenerator: Pushed block input-0-1542617432400 更新broadcast...2018-11-19 16:50:45 1,111,1541433600000(2018-11-06 00:00:00) 2,222,1541433600000(2018-11-06 00:00:00) 3,333,1541433600000(2018-11-06 00:00:00) 18/11/19 16:50:45 INFO memory.MemoryStore: Block broadcast_6 stored as values in memory (estimated size 688.0 B, free 456.1 MB) 。。。。 18/11/19 16:50:45 INFO scheduler.DAGScheduler: Job 3 finished: print at App.scala:59, took 0.066975 s ------------------------------------------- Time: 1542617445000 ms ------------------------------------------- CellJoinMro(3,4444,2018-11-06 00:00:00) 18/11/19 16:50:45 INFO scheduler.JobScheduler: Finished job streaming job 1542617445000 ms.0 from job set of time 1542617445000 ms 18/11/19 16:50:45 INFO scheduler.JobScheduler: Total delay: 0.367 s for time 1542617445000 ms (execution: 0.083 s) 18/11/19 16:50:45 INFO rdd.MapPartitionsRDD: Removing RDD 9 from persistence list
日志分析:
每个batch都执行transform中的更新broadcast代码,而且也执行了broadcast获取代码。因此,每次都可进行更新broadcast内容,并且获取到broadcast中的内容。
2)Spark Structured Streaming更新broadcast(不可行)
def sparkStructuredStreaming(): Unit = { val spark = SparkSession.builder.appName("Test_Broadcast_ByScala_App").getOrCreate() spark.streams.addListener(new StreamingQueryListener { override def onQueryStarted(event: StreamingQueryListener.QueryStartedEvent): Unit = { println("*************** onQueryStarted ***************") } override def onQueryProgress(event: StreamingQueryListener.QueryProgressEvent): Unit = { println("*************** onQueryProgress ***************") // 这段代码可以把broadcast对象更新成功,但是spark structured streaming内部读取到的broadcast对象数据依然是老数据。 // BroadcastWrapper.update(spark.sparkContext, true) println("*************** onQueryProgress update broadcast " + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date())) } override def onQueryTerminated(event: StreamingQueryListener.QueryTerminatedEvent): Unit = { println("*************** onQueryTerminated ***************") } }) // Create DataFrame representing the stream of input lines from connection to localhost:9999 val lines = spark.readStream.format("socket").option("host", ipAddr).option("port", 19999).load() import spark.implicits._ val mro = lines.as(Encoders.STRING).map(row => { val fields = row.split(",") Mro(fields(0), fields(1)) }) val cellJoinMro = mro.transform(row => { // 这段代码在第一次触发时执行,之后触发就不再执行。 println("更新broadcast..." + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date())) if (1 < 3) { println("------------------------1111-----------------------------") BroadcastWrapper.update(spark.sparkContext) } var broadcastCellRes = BroadcastWrapper.getInstance(spark.sparkContext) row.map(row => { val int_id: String = row.int_id val rsrp: String = row.rsrp val findResult: String = String.join(",", broadcastCellRes.value.get(int_id).get) val timeStamps: String = String.join(",", findResult) CellJoinMro(int_id, rsrp, timeStamps) }) }) val query = cellJoinMro.writeStream.format("console") .outputMode("update") .trigger(Trigger.ProcessingTime(15, TimeUnit.SECONDS)) .start() query.awaitTermination() }
执行日志:
18/11/19 17:12:49 INFO state.StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint 18/11/19 17:12:50 WARN streaming.TextSocketSourceProvider: The socket source should not be used for production applications! It does not support recovery. 更新broadcast...2018-11-19 17:12:51 ------------------------1111----------------------------- 1,111,1541347200000(2018-11-05 00:00:00) 2,222,1541347200000(2018-11-05 00:00:00) 3,333,1541347200000(2018-11-05 00:00:00) ..... ------------------------------------------- Batch: 0 ------------------------------------------- 18/11/19 17:13:03 INFO codegen.CodeGenerator: Code generated in 82.760622 ms 。。。。 18/11/19 17:13:19 INFO scheduler.DAGScheduler: Job 4 finished: start at App.scala:109, took 4.215709 s +------+----+-------------------+ |int_id|rsrp| timestamp| +------+----+-------------------+ | 1| 22|2018-11-05 00:00:00| +------+----+-------------------+ 18/11/19 17:14:00 INFO streaming.StreamExecution: Committed offsets for batch 1. Metadata OffsetSeqMetadata(0,1542618840003,Map(spark.sql.shuffle.partitions -> 600)) 此时更新资源文件,附加2018-11-06的资源文件。 ------------------------------------------- Batch: 1 ------------------------------------------- 18/11/19 17:14:00 INFO spark.SparkContext: Starting job: start at App.scala:109 。。。 18/11/19 17:14:05 INFO scheduler.DAGScheduler: Job 9 finished: start at App.scala:109, took 3.068106 s +------+----+-------------------+ |int_id|rsrp| timestamp| +------+----+-------------------+ | 2| 333|2018-11-05 00:00:00| +------+----+-------------------+
日志分析:
测试结论:
Spark Streaming更新broadcast(可行)、Spark Structured Streaming更新broadcast(不可行),原因Spark Streaming的执行引擎是Spark Engine,是代码执行,在算子的构造函数中可以访问SparkContext,SparkSession,而且这些类构造函数是可以每次都执行的。
而Spark Structured Streaming的执行引擎是Spark Sql Engine,是把代码优化为Spark Sql Engine希望的格式去执行,不可以在每次trigger事件触发都执行执行块以外的代码,因此这些类构造函数块代码只能执行一次,执行块类似MapFunction的call()函数内,不允许访问SparkContext,SparkSession对象,因此无处进行每次trigger都进行broadcast更新。
那么,如何在Spark Struectured Streaming中实现更新broadcast的方案,升级spark版本,从spark2.3.0开始,spark structured streaming支持了stream join stream(请参考《Spark2.3(三十七):Stream join Stream(res文件每天更新一份)》)。