02-07 多元线性回归(波士顿房价预测)

文章目录

  • 多元线性回归(波士顿房价预测)
  • 导入模块
  • 获取数据
  • 训练模型
  • 可视化
  • 均方误差测试

多元线性回归(波士顿房价预测)

导入模块

02-07 多元线性回归(波士顿房价预测)_第1张图片

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')

获取数据

df = pd.read_csv('housing-data.txt', sep='\s+', header=0)
X = df.iloc[:, :-1].values
y = df['MEDV'].values
# 将数据分成训练集(0.7)和测试集(0.3)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

训练模型

lr = LinearRegression()
# 训练模型
lr.fit(X_train, y_train)
# 预测训练集数据
y_train_predict = lr.predict(X_train)
# 预测测试集数据
y_test_predict = lr.predict(X_test)

可视化

# y_train_predict-y_train训练数据误差值
plt.scatter(y_train_predict, y_train_predict-y_train, c='r',
            marker='s', edgecolor='white', label='训练数据')
# y_train_predict-y_train测试数据误差值
plt.scatter(y_test_predict, y_test_predict-y_test, c='g',
            marker='o', edgecolor='white', label='测试数据')
plt.xlabel('预测值', fontproperties=font)
plt.ylabel('误差值', fontproperties=font)
# 可视化y=0的一条直线即误差为0的直线
plt.hlines(y=0, xmin=-10, xmax=50, color='k')
plt.xlim(-10, 50)
plt.legend(prop=font)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eI7P3nCq-1582629418784)(02-07%20%E5%A4%9A%E5%85%83%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%28%E6%B3%A2%E5%A3%AB%E9%A1%BF%E6%88%BF%E4%BB%B7%E9%A2%84%E6%B5%8B%29_files/02-07%20%E5%A4%9A%E5%85%83%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%28%E6%B3%A2%E5%A3%AB%E9%A1%BF%E6%88%BF%E4%BB%B7%E9%A2%84%E6%B5%8B%29_8_0.png)]

均方误差测试

from sklearn.metrics import mean_squared_error

# 训练集的均方误差
train_mse = mean_squared_error(y_train,y_train_predict)
# 测试集的均方误差
test_mse = mean_squared_error(y_test,y_test_predict)
print('训练集的均方误差:{}'.format(train_mse))
print('测试集的均方误差:{}'.format(test_mse))
训练集的均方误差:23.049177061822277
测试集的均方误差:19.901828312902534

  训练集的均方误差是19.4,而测试集的均方误差是28.4,可以发现测试集的误差更大了,也就是说训练集过拟合了。

02-07 多元线性回归(波士顿房价预测)_第2张图片

你可能感兴趣的:(机器学习)