人工智能常用英文缩写

时时刻刻保持一颗不断学习的心,要做一个有心人!

人工智能行业涉及到的英文缩写颇多,现总结如下。会不断保持更新,敬请各位小伙伴们关注~谢谢大家!

前方高能!!!

人工智能常用英文缩写

 

一、科普篇:

NLP:Natural Language Processing,自然语言处理;

CV:Computer Vision,计算机视觉;

BI:Business Intelligence,商业智能;

RS:Recommender Systems,推荐系统;

KDD:Knowledge Discovery in Database,知识发现;

CVPR:Computer Vision and Pattern Recognition,计算机视觉与模式识别大会;

ILSVRC:ImageNet Large Scale Visual Recongition Challenge,大规模图像识别大赛;

 

二、机器学习篇:

TP:True Positive,真正类;

FN:False Negative,假反类;

FP:False Positive,假正类;

TN:True Negative,真反类;

AUC:Area Under Curve,曲线下面积;

ROC:Receiver Operating Characteristic,受试者工作特征曲线;

ROI:Region Of Interest,感兴趣区域;

MAE:Mean Absolute Error,平均绝对误差;

MSE:Mean Square Error,均方误差;

RMSE:Root Mean Square Error,均方根误差;

MLE:Maximum Likelihood Estimation,最大似然估计;

MAP:Maximum A Posterior Estimation,最大后验估计;

SSR:Sum of Squares for Regression,回归平方和;

SSE:Sum of Squares for Error,残差平方和;

SST:Sum of Squares for Total,总偏差平方和(SST = SSR + SSE);

CART:Classification And Regression Tree,分类回归树算法;

PCA:Principal Component Analysis,主成分分析(一种常用的无监督学习方法,属于降维方法);

SVM:Support Vector Machine,支持向量机(一种二分类模型);

TF-IDF:Term Frequency-Inverse Document Frequency,词频-逆向文档频率;

LFM:Latent Factor Model,隐语义模型;

LSA:Latent Semantic Analysis,潜在语义分析(一种无监督学习方法);

PLSA:Probabilistic Latent Semantic Analysis,概率潜在语义分析模型(一种无监督学习方法);

LDA:Latent Dirichlet Allocation,潜在狄利克雷分配(一种文档主题生成模型),Linear Discriminant Analysis,线性判别分析;

QDA:Quadratic Discriminant Analysis,二次判别分析;

LE:Laplacian Eigenmaps,拉普拉斯特征映射;

LLE:Locally Linear Embedding,局部线性嵌入;

VSM:Vector Space Model,向量空间模型;

KNN:K-Nearest Neighbor,K最近邻分类算法;

ANN:Approximate Nearest Neighbor,近似最近邻算法;

MRF:Markov Random Field,马尔可夫随机场;

HMM:Hidden Markov Model,隐马尔可夫模型(一种生成模型);

EM:Expectation Maximization algorithm,期望极大算法,简称EM算法;

GEM:Generalized Expectation Maximization algorithm,广义期望极大算法;

SMO:Sequential Minimal Optimization,序列最小最优化算法;

CRF:Conditional Random Field,条件随机场;

 

三、神经网络篇:

MLP:MultiLayer Perceptron,多层感知机;

FNN:Feedforward Neural Network,前馈神经网络;

CNN:Convolutional Neural Network,卷积神经网络;

RNN:Recurrent Neural Network,循环神经网络;

LSTM:Long Short Term Memory,长短期记忆网络;

GRU:Gated Recurrent Unit,门控循环单元;

 

四、推荐系统篇:

LR:Linear Regression(线性回归,解决监督学习中的回归问题),Logistic Regression(逻辑回归,解决监督学习中的分类问题);

GBDT:Gradient Boosting Decision Tree,梯度提升树;

MART:Multiple Additive Regression Tree,多重累计回归树(相当于GBDT);

ALS:Alternating Least Squares,交替最小二乘法;

BGD:Batch Gradient Descent,批量梯度下降;

SGD:Stochastic Gradient Descent,随机梯度下降;

MBGD:Mini-Batch Gradient Descent,小批量梯度下降;

MCMC:Markov Chain Monte Carlo,马尔可夫链蒙特卡罗法;

EVD:Eigen Value Decmoposition,特征值分解;

SVD:Singular Value Decomposition,奇异值分解;

MF:Matrix Factorization,矩阵分解;

NMF:Non-negative Matrix Factorization,非负矩阵分解;

FM:Factorization Machine,因子分解机;

 

五、计算机视觉篇:

CNN:Convolutional Neural Network,卷积神经网络;

FCN:Fully Convolutional Network,全卷积网络;

GAN:Generative Adversarial Nets,生成式对抗网络;

DQN:Deep Q-Network,深度Q网络(基于Q学习的强化学习算法);

 

你可能感兴趣的:(人工智能,机器学习,深度学习,神经网络,数据挖掘)