PyTorch 0.4 版本变化及迁移指南

 确实有一些变化的,而且现在好多pytorch的书籍还都是旧的版本,好多代码已经无法运行,是时候看看版本变化记录了!

翻译整理自:http://pytorch.org/2018/04/22/0_4_0-migration-guide.html https://ptorch.com/news/189.html https://ptorch.com/news/187.html

  • TensorsVariables已合并
  • Tensors支持0维(标量)
  • 弃用volatile标签
  • dtypesdevicesNumPy风格的创作功能
  • 编写device-agnostic代码
  • nn.Module中子模块名称,参数和缓冲区中的新边界约束

一、合并Tensor和Variable和类

torch.autograd.Variabletorch.Tensor现在类相同。确切地说,torch.Tensor能够像Variable一样自动求导; Variable继续像以前一样工作但返回一个torch.Tensor类型的对象。意味着你在代码中不再需要Variable包装器。

1、Tensor中的type()改变了

type()不再反映张量的数据类型。使用isinstance()x.type()替代:

>>> x = torch.DoubleTensor([1, 1, 1])
>>> print(type(x))  # was torch.DoubleTensor
""
>>> print(x.type())  # OK: 'torch.DoubleTensor'
'torch.DoubleTensor'
>>> print(isinstance(x, torch.DoubleTensor))  # OK: True
True

2、什么时候autograd开始自动求导?

equires_gradautograd的核心标志,现在是Tensors上的一个属性。让我们看看在代码中如何体现的。
autograd使用以前用于Variables的相同规则。当张量定义了requires_grad=True就可以自动求导了。例如,

>>> x = torch.ones(1)  # create a tensor with requires_grad=False (default)
>>> x.requires_grad
False
>>> y = torch.ones(1)  # another tensor with requires_grad=False
>>> z = x + y
>>> # both inputs have requires_grad=False. so does the output
>>> z.requires_grad
False
>>> # then autograd won't track this computation. let's verify!
>>> z.backward()
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
>>>
>>> # now create a tensor with requires_grad=True
>>> w = torch.ones(1, requires_grad=True)
>>> w.requires_grad
True
>>> # add to the previous result that has require_grad=False
>>> total = w + z
>>> # the total sum now requires grad!
>>> total.requires_grad
True
>>> # autograd can compute the gradients as well
>>> total.backward()
>>> w.grad
tensor([ 1.])
>>> # and no computation is wasted to compute gradients for x, y and z, which don't require grad
>>> z.grad == x.grad == y.grad == None
True

3、操作requires_grad标志

除了直接设置属性之外,您可以使用my_tensor.requiresgrad(requires_grad=True)直接修改此标志,或者如上例所示,在创建时将其作为参数传递(默认为False),例如:

>>> existing_tensor.requires_grad_()
>>> existing_tensor.requires_grad
True
>>> my_tensor = torch.zeros(3, 4, requires_grad=True)
>>> my_tensor.requires_grad
True

4、关于.data

.data是从Variable中获取Tensor的方法。合并后,调用y = x.data仍然具有类似的语义。因此y将是与x共享同的Tensor相数据,x与计算历史无关,并具有requires_grad=False

但是,.data在某些情况下可能不安全。x.data上的任何变化都不会被autograd跟踪,并且x在向后传递中计算梯度将不正确。一种更安全的替代方法是使用x.detach(),它也返回一个Tensorrequires_grad=False共享数据的数据,但是如果x需要反向传播那就会使用autograd直接改变报告。

下面是一个.datax.detach()(以及为什么我们建议detach一般使用)之间的区别的例子。

如果你使用Tensor.detach(),保证梯度计算是正确的。

>>> a = torch.tensor([1,2,3.], requires_grad = True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0.,  0.,  0.])

>>> out  # modified by c.zero_() !!
tensor([ 0.,  0.,  0.])

>>> out.sum().backward()  # Requires the original value of out, but that was overwritten by c.zero_()
RuntimeError: one of the variables needed for gradient computation has been modified by an 

然而,使用Tensor.data可能是不安全的,并且当梯度计算需要张量但直接修改时可能容易导致不正确的梯度。

>>> a = torch.tensor([1,2,3.], requires_grad = True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0.,  0.,  0.])

>>> out  # out  was modified by c.zero_()
tensor([ 0.,  0.,  0.])

>>> out.sum().backward()
>>> a.grad  # The result is very, very wrong because `out` changed!
tensor([ 0.,  0.,  0.])

二、现在一些操作返回0维(标量)Tensors

以前,Tensor向量(1维张量)的索引返回一个Python数字,但是Variable的索引向量返回一个(1,)的向量!即tensor.sum()返回一个Python数字,但variable.sum()会返回一个大小为(1,)的向量。

幸运的是,此版本在PyTorch中引入了适当的标量(0维张量)支持!可以使用新torch.tensor函数来创建标量(稍后会对其进行更详细的解释;现在只需将它看作PyTorch中与numpy.array的等价物)。现在你可以做这样的事情:

>>> torch.tensor(3.1416)         # create a scalar directly
tensor(3.1416)
>>> torch.tensor(3.1416).size()  # scalar is 0-dimensional
torch.Size([])
>>> torch.tensor([3]).size()     # compare to a vector of size 1
torch.Size([1])
>>>
>>> vector = torch.arange(2, 6)  # this is a vector
>>> vector
tensor([ 2.,  3.,  4.,  5.])
>>> vector.size()
torch.Size([4])
>>> vector[3]                    # indexing into a vector gives a scalar
tensor(5.)
>>> vector[3].item()             # .item() gives the value as a Python number
5.0
>>> mysum = torch.tensor([2, 3]).sum()
>>> mysum
tensor(5)
>>> mysum.size()
torch.Size([])

1、积累损失

考虑到经常使用的total_loss += loss.data[0]0.4.0之前。loss(1,)张量的Variable包装器,但在0.4.0loss现在是一个0尺寸标量。标量索引是没有意义的(目前只提出一个警告,但在0.5.0中将会报错)。loss.item()用于从标量中获取Python数字。

请注意,如果您在累积损失时未将其转换为Python数字,则可能会发现程序中的内存使用量增加。这是因为上面表达式的右侧曾经是一个Python浮点数,而现在它是一个0的张量。因此,总损失累积了张量和它们的历史梯度,可能导致巨大的autograd图形不必要的保存大量时间。

三、弃用volatile标签

volatile标签现在已被弃用,不起作用。以前,任何涉及Variablewith的计算volatile=True都不会被跟踪autograd。这已经被换成了一套更加灵活的上下文管理的,包括torch.no_grad()torch.set_grad_enabled(grad_mode)及其他。

>>> x = torch.zeros(1, requires_grad=True)
>>> with torch.no_grad():
...     y = x * 2
>>> y.requires_grad
False
>>>
>>> is_train = False
>>> with torch.set_grad_enabled(is_train):
...     y = x * 2
>>> y.requires_grad
False
>>> torch.set_grad_enabled(True)  # this can also be used as a function
>>> y = x * 2
>>> y.requires_grad
True
>>> torch.set_grad_enabled(False)
>>> y = x * 2
>>> y.requires_grad
False

四、dtypes,devices和NumPy风格的创作功能

在以前的PyTorch版本中,我们用来指定的数据类型(例如float vs double),设备类型(cpu vs cuda)和layoutdense vs sparse)作为"张量类型"。例如,torch.cuda.sparse.DoubleTensorTensordouble数据类型,在CUDA设备只能够,以及配备COO稀疏张量layout。

在此版本中,我们引入torch.dtypetorch.device以及torch.layout类,允许通过NumPy的风格创建这些属性的功能进行更好的管理。

pytorch0.4开始提出了Tensor Attributes,主要包含了torch.dtype,torch.device,torch.layoutpytorch可以使用他们管理数据类型属性。以下内容为pytorch0.4文档内容,具体可以查看Tensor Attributes

Tensor Attributes

  • torch.dtype
  • torch.device
  • torch.layout

每个torch.Tensor都有torch.dtype, torch.device,和torch.layout

torch.dtype

torch.dtype是表示torch.Tensor的数据类型的对象。PyTorch有八种不同的数据类型:

Data type dtype Tensor types
32-bit floating point torch.float32 or torch.float torch.*.FloatTensor
64-bit floating point torch.float64 or torch.double torch.*.DoubleTensor
16-bit floating point torch.float16 or torch.half torch.*.HalfTensor
8-bit integer (unsigned) torch.uint8 torch.*.ByteTensor
8-bit integer (signed) torch.int8 torch.*.CharTensor
16-bit integer (signed) torch.int16 or torch.short torch.*.ShortTensor
32-bit integer (signed) torch.int32 or torch.int torch.*.IntTensor
64-bit integer (signed) torch.int64 or torch.long torch.*.LongTensor

使用方法:

>>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> print x.type()
torch.FloatTensor

torch.device

torch.device代表将torch.Tensor分配到的设备的对象。

torch.device包含一个设备类型('cpu''cuda'设备类型)和可选的设备的序号。如果设备序号不存在,则为当前设备; 例如,torch.Tensor用设备构建'cuda'的结果等同于'cuda:X',其中Xtorch.cuda.current_device()的结果。

torch.Tensor的设备可以通过Tensor.device访问属性。

构造torch.device可以通过字符串/字符串和设备编号。

通过一个字符串:

>>> torch.device('cuda:0')
device(type='cuda', index=0)

>>> torch.device('cpu')
device(type='cpu')

>>> torch.device('cuda')  # current cuda device
device(type='cuda')

通过字符串和设备序号:

>>> torch.device('cuda', 0)
device(type='cuda', index=0)

>>> torch.device('cpu', 0)
device(type='cpu', index=0)

注意 torch.device函数中的参数通常可以用一个字符串替代。这允许使用代码快速构建原型。

>> # Example of a function that takes in a torch.device
>> cuda1 = torch.device('cuda:1')
>> torch.randn((2,3), device=cuda1)
>> # You can substitute the torch.device with a string
>> torch.randn((2,3), 'cuda:1')

注意 出于传统原因,可以通过单个设备序号构建设备,将其视为cuda设备。这匹配Tensor.get_device(),它为cuda张量返回一个序数,并且不支持cpu张量。

>> torch.device(1)
device(type='cuda', index=1)

注意 指定设备的方法可以使用(properly formatted)字符串或(legacy)整数型设备序数,即以下示例均等效:

>> torch.randn((2,3), device=torch.device('cuda:1'))
>> torch.randn((2,3), device='cuda:1')
>> torch.randn((2,3), device=1)  # legacy

torch.layout

torch.layout表示torch.Tensor内存布局的对象。目前,我们支持torch.strided(dense Tensors)并为torch.sparse_coo(sparse COO Tensors)提供实验支持。

torch.strided代表密集张量,是最常用的内存布局。每个strided张量都会关联 一个torch.Storage,它保存着它的数据。这些张力提供了多维度, 存储的strided视图。Strides是一个整数型列表:k-th stride表示在张量的第k维从一个元素跳转到下一个元素所需的内存。这个概念使得可以有效地执行多张量。

例:

>>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> x.stride()
(5, 1)

>>> x.t().stride()
(1, 5)

1、创建 Tensors

创造一个方法Tensor,现在也可使用dtypedevicelayout,和requires_grad选项来指定返回所需的Tensor属性。例如:

>>> device = torch.device("cuda:1")
>>> x = torch.randn(3, 3, dtype=torch.float64, device=device)
tensor([[-0.6344,  0.8562, -1.2758],
        [ 0.8414,  1.7962,  1.0589],
        [-0.1369, -1.0462, -0.4373]], dtype=torch.float64, device='cuda:1')
>>> x.requires_grad  # default is False
False
>>> x = torch.zeros(3, requires_grad=True)
>>> x.requires_grad
True

五、编写device-agnostic代码

以前版本的PyTorch编写device-agnostic代码非常困难(即,在不修改代码的情况下在CUDA可以使用或者只能使用CPU的设备上运行)。

device-agnostic的概念

即设备无关,可以理解为无论什么设备都可以运行您编写的代码。(PS:个人理解,我没有在网上找到专业解释)

PyTorch 0.4.0使代码兼容

PyTorch 0.4.0通过两种方法使代码兼容变得非常容易:

  • 张量的device属性为所有张量提供了torch.device设备。(注意:get_device仅适用于CUDA张量)

  • to方法TensorsModules可用于容易地将对象移动到不同的设备(代替以前的cpu()cuda()方法)

我们推荐以下模式:

# 开始脚本,创建一个张量
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

...

# 但是无论你获得一个新的Tensor或者Module
# 如果他们已经在目标设备上则不会执行复制操作
input = data.to(device)
model = MyModule(...).to(device)

 

六、nn.Module中子模块名称,参数和缓冲区中的新边界约束

name这是一个空字符串或包含"."不再被允许进入module.add_module(name, value)module.add_parameter(name, value)或者module.add_buffer(name, value)因为这些名称可能会在state_dict中导致数据丢失。如果您为包含这些名称的模块加载checkpoint,请在加载之前更新模块定义并进行修补state_dict

1、代码示例(将它们放在一起)

为了方便对比0.4.0中整体推荐的变化的特征,我们来看一个0.3.10.4.0中常见代码模式的简单例子:

0.3.1(旧):

model = MyRNN()
if use_cuda:
    model = model.cuda()

# train
total_loss = 0
for input, target in train_loader:
    input, target = Variable(input), Variable(target)
    hidden = Variable(torch.zeros(*h_shape))  # init hidden
    if use_cuda:
        input, target, hidden = input.cuda(), target.cuda(), hidden.cuda()
    ...  # get loss and optimize
    total_loss += loss.data[0]

# evaluate
for input, target in test_loader:
    input = Variable(input, volatile=True)
    if use_cuda:
        ...
    ...

0.4.0(新):

# torch.device object used throughout this script
device = torch.device("cuda" if use_cuda else "cpu")

model = MyRNN().to(device)

# train
total_loss = 0
for input, target in train_loader:
    input, target = input.to(device), target.to(device)
    hidden = input.new_zeros(*h_shape)  # has the same device & dtype as `input`
    ...  # get loss and optimize
    total_loss += loss.item()           # get Python number from 1-element Tensor

# evaluate
with torch.no_grad():                   # operations inside don't track history
    for input, target in test_loader:
        ...

感谢您的阅读!有关更多详细信息,请参阅官方文档和发行说明。

Happy PyTorching!

你可能感兴趣的:(●,人工智能,深度学习从入门到放弃)