人脸识别方案汇总

 

  • SphereFace: Deep Hypersphere Embedding for Face Recognition(A-softloss)

 

MegaFace

LFW(Labeled Faces in the Wild)

YouTube Faces DB

Face Verification

89.142%(#3)

99.42%(#6)

95.0%(#8)

Face Identification

75.766%(#3)

/

 
  • CosFace:Large Margin Cosine Loss for Deep Face Recognition

 

MegaFace

LFW(Labeled Faces in the Wild)

YouTube Faces DB

Face Verification

96.65%(# 2)

99.73%(# 2)

97.6%(# 3)

Face Identification

82.72%(# 2)

/

/
  • ArcFace: Additive Angular Margin Loss for Deep Face Recognition

 

MegaFace

LFW(Labeled Faces in the Wild)

YouTube Faces DB

Face Verification

98.48%,(# 1)
(model:ArcFace + MS1MV2 + R100,)

 

99.83%,(# 1)
(model: ArcFace + MS1MV2 + R100,)

98.02%,(# 2)
(Model: ArcFace + MS1MV2 + R100,)

Face Identification

98.35%,(# 1)
(model: ArcFace + MS1MV2 + R100 + R)

/

/
  • Additive Margin Softmax for Face Verification(AM-softmax)

实验数据较少,但在ResNet 20中比A-softmax中比A-softmax要好,got 97.96 on LFW under FAR=0.1% 

  • Support Vector Guided Softmax Loss for Face Recognition

 

MegaFace

LFW(Labeled Faces in the Wild)

Trillion Pairs

Face Verification

99.03
SV-AM-Softmax

97.57%
SV-Arc-Softmax

78.49%
SV-AM-Softmax loss

Face Identification

98.82
SV-AM-Softmax

97.20%
SV-AM-Softmax

82.25%
SV-AM-Softmax loss

 

你可能感兴趣的:(深度学习,算法,机器学习)