tensorboard不能正常可视化

tensorboard问题

tensorboard不能好好显示出可视化界面真是令人头疼,一开始在Windows下运行了这段代码:

import tensorflow as tf
import numpy as np
#import matplotlib.pyplot as plt
def add_layer(inputs,in_size,out_size,activation_funtion = None):
    with tf.name_scope('layer'):
        with tf.name_scope('weightd'):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
        with tf.name_scope('biases'):    
            biases = tf.Variable(tf.zeros([1, out_size])+ 0.1,name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.matmul(inputs,Weights) + biases

        if activation_funtion is None:
            outputs=Wx_plus_b
        else:
            outputs = activation_funtion(Wx_plus_b)
        return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise =np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise

#print("y_data:", y_data)
with tf.name_scope('inputs'):
   xs=tf.placeholder(tf.float32,[None, 1], name= "x_inputs")
   ys=tf.placeholder(tf.float32,[None, 1], name= "y_inputs")

l1 =add_layer(xs, 1, 10, tf.nn.relu)   
#l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,None)

with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                     reduction_indices=[1]))

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.global_variables_initializer()  

sess = tf.Session()
writer = tf.summary.FileWriter("logs/", sess.graph)

sess.run(init)

#plt.ion()

#fig = plt.figure()
#ax = fig.add_subplot(1,1,1)
#ax.scatter(x_data,y_data)



for i in range(1000):
   sess.run (train_step,{xs:x_data,ys:y_data})
   if i%50==0:
       #print(i, sess.run(loss,{xs:x_data,ys:y_data}))

       #try:
       #    ax.lines.remove(lines[0])
       #    plt.pause(0.1)
       #
       #except Exception:
       #   pass

       prediction_value = sess.run(prediction, feed_dict = {xs:x_data})
       #lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
       #ax.lines.remove(lines[0])


#plt.ioff()
#plt.show()
writer.close()  

在命令行输入tensorboard –logdir logs,出来的结果是一个很复杂的网络结构
这里写图片描述
完全没有实现代码中分层的要求

然后再服务器上运行,结果显示服务器连接超时,tensorboard网页不能打开。

最后把在服务器上的log文件拿到window下,打开tensorboard,显示正常
tensorboard不能正常可视化_第1张图片

所以,最后的解决方法是,在服务器下运行生成log文件,在window下打开log文件,over。

你可能感兴趣的:(手残党的血泪史)