- [学习] PID算法原理与实践(代码示例)
极客不孤独
学习算法c语言
PID算法原理与实践文章目录PID算法原理与实践一、PID算法原理1.1PID算法概述1.定义2.应用领域3.核心目标1.2基本原理1.3数学表达离散化实现(适用于数字控制)二、实践案例(C语言)1.电机转速控制2.温度控制系统3.时钟驯服系统三、常见问题与优化1.积分饱和(Windup)问题2.噪声干扰问题3.非线性系统适配问题四、扩展方向1.数字PID与模拟PID的差异2.变参数PID(如增益
- PyWavelets
shangjg3
PyTorchpytorch人工智能python
PyWavelets(pywt)是Python中用于小波变换的核心库,提供了丰富的信号处理和图像处理功能。以下是其核心功能的详细介绍:1.小波变换基础(1)离散小波变换(DWT)将信号分解为近似系数(Approximation)和细节系数(Detail)。importpywtimportnumpyasnp#示例信号signal=np.array([1
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 信号处理算法:快速傅里叶变换(FFT)_(2).FFT算法的原理与实现
kkchenkx
信号处理技术仿真模拟信号处理算法
FFT算法的原理与实现1.引言快速傅里叶变换(FastFourierTransform,FFT)是一种高效的算法,用于计算离散傅里叶变换(DiscreteFourierTransform,DFT)及其逆变换。DFT在信号处理、图像处理、通信工程等领域中有着广泛的应用,但其计算复杂度为O(N2)O(N^2)O(
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- 来聊聊CST(CST Studio Suite)电路仿真(一)
思茂信息
CST电磁仿真教程性能优化网络人工智能算法windows服务器
首先我来提出一个疑问:在CST3D界面中,我在两个金属之间添加一个离散端口(discreteport),而在电路图(schematic)界面中只出现了一个端口,那么如何添加两个pin的电阻元件呢?本期我们来浅谈一下电路图中的端口究竟为何物。1、Port——天涯若比邻3D界面创建的Port是连接3D界面和电路图界面的接口。如下图所示,这里有三条PCB走线,各自串联一个port,分别为port①、po
- 【Rust】——使用消息在线程之间传递数据
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客目录信道与所有权转移发送多个值并观察接收者的等待通过克隆发送者来创建多个生产者学
- VC++实现的快速傅里叶变换频谱分析软件
直推小新
本文还有配套的精品资源,点击获取简介:基于VC++和MFC的频谱分析程序通过快速傅里叶变换(FFT)技术,将时域信号转换至频域,实现对导入文本或Excel数据的离散谱分析。用户可通过图形界面轻松导入数据,选择分析选项并查看结果。程序利用FFT高效地计算频域数据,并通过图表展示信号频率成分。此分析工具适用于音频处理、通信、医学成像和机械故障诊断等领域。1.VC++和MFC框架介绍1.1VC++的发展
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- 公钥密码体系崩溃风险:Shor算法可在多项式时间内破解RSA、ECC等基于大整数分解和离散对数问题的公钥算法。4099量子位的量子计算机运行Shor算法可在10秒内破解RSA2048
百态老人
算法量子计算
基于我搜索到的资料,以下从四个维度全面分析公钥密码体系的量子威胁现状及应对策略:一、Shor算法对公钥密码体系的威胁机制算法原理与攻击效率Shor算法通过量子傅里叶变换(QFT)高效求解整数分解和离散对数问题:核心步骤包括随机数生成、模指数周期检测(f(x)=axmod Nf(x)=a^x\modNf(x)=axmodN)和量子并行计算,复杂度仅O(log3N)O(\log^3N)O(log3
- Sklearn 机器学习 数值离散化 区间标签
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化之区间标签设置详解在机器学习中,连续数值型特征并不总是最优选择,尤其是在面对一些对数值大小不敏感的模型(如决策树、朴素贝叶斯)时。此时,我们常常希望将连续变量离散化(Discret
- Python训练打卡Day15
编程有点难
Python学习笔记python开发语言
复习日回顾一下之前14天的内容:importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltdata=pd.read_csv('ObesityDataSet.csv')data.head()#分离连续变量与离散变量discrete_features=['Gender','family_history_with_overweight',
- k近邻算法(kNearest Neighbors) 原理与代码实例讲解
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
k-近邻算法,聚类,分类,分离散数据,决策边界,邻域,机器学习,监督学习k-近邻算法(k-NearestNeighbors)-原理与代码实例讲解k-近邻算法(k-NearestNeighbors,简称kNN)是一种简单的监督学习方法,它在机器学习领域有着广泛的应用。kNN算法的核心思想是:在特征空间中,如果一个样本附近的k个最近邻样本的大多数属于某个类别,则该样本也属于这个类别。这种基于局部决策的
- 强化学习系列——PPO算法
lqjun0827
算法深度学习算法人工智能
强化学习系列——PPO算法PPO算法一、背景知识:策略梯度&Advantage二、引入重要性采样(ImportanceSampling)三、PPO-Clip目标函数推导✅四、总结公式(一图总览)参考文献PPO示例代码实现补充内容:重要性采样一、问题背景:我们想估计某个期望❗问题:二、引入重要性采样(ImportanceSampling)三、离散采样形式(蒙特卡洛估计)四、标准化的重要性采样五、在强
- 60天python训练营打卡day5
学习目标:60天python训练营打卡学习内容:DAY5独热编码题目:离散特征的独热编码先按照示例代码过一遍,然后完成下列题目现在在py文件中一次性处理data数据中所有的连续变量和离散变量读取data数据对离散变量进行one-hot编码对独热编码后的变量转化为int类型4.对所有缺失值进行填充注意是py文件中,所以每一步的输出是否正确需要你来使用debugger功能来逐步查看注意此时你可以借助下
- PCL 稀疏点云上采样——最近邻插值与K近邻插值(C++详细过程版)
点云侠
PCL算法实现与优化c++开发语言算法3d
点云插值一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示算法原理参考自论文,代码由CSDN点云侠原创,首发于:2025年6月23日。一、算法原理1、原理概述 点云是一系列离散点的集合,点云密度越大,密集程度就越高,反之越低。实物目标上的点并不完全在点云上显示。在多次测量获取的点云数据中,实物目标上的一个固定点有可能在每一次测量数据上,也可能在某一次测量数据上,更可能在任何一次测量数据
- 数据分箱:科学分类的简单指南
晨曦543210
绘图与数据可视化算法机器学习人工智能
1.什么是数据分箱?分箱就像把杂乱的东西分类放进不同的箱子。比如把年龄分成"儿童、青年、中年、老年",就是把连续的数字分成几个类别。2.什么样的数据可以分箱?可以分箱的数据:①连续型数据(数字有大小意义)例子:年龄、工资、温度、考试成绩。为什么可以分箱:这些数字可以按范围分组(比如0-18岁→"儿童")。数学补充:连续数据是可以在一定范围内取任意值的数(比如1.5岁、2.3岁)。②离散型数据(数字
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 离散TPM驱动程序
安全二次方
可信计算与可信启动ARM安全架构可信计算可信启动trustedbootmeasuredboot离散TPMTPM驱动程序
安全之安全(security²)博客目录导读目录一、驱动架构1.1头文件1.2源文件二、编译时配置选项三、离散TPM初始化四、离散TPMPCR扩展本博客重点介绍了TF-A中离散TPM驱动的设计与功能。TPM技术旨在提供一种专用的、基于硬件的解决方案,用于存储加密密钥以及执行安全相关操作。离散TPM是一种独立的硬件组件,物理上与系统主处理器隔离。这种隔离有助于保护敏感信息(如加密密钥和平台凭据)不被
- 解锁数据宝藏:数据挖掘之数据预处理全解析
奔跑吧邓邓子
必备核心技能数据挖掘数据预处理机器学习
目录一、引言:数据预处理——数据挖掘的基石二、数据预处理的重要性2.1现实数据的问题剖析2.2数据预处理的关键作用三、数据预处理的核心方法3.1数据清洗3.1.1缺失值处理3.1.2离群点处理3.1.3噪声处理3.2数据集成3.2.1实体识别3.2.2冗余处理3.2.3数据值冲突处理3.3数据变换3.3.1平滑处理3.3.2聚合操作3.3.3离散化3.3.4归一化四、数据预处理的实践流程4.1数据
- 离散数学实验——真值表生成
ZufUss
数据结构c++vscode
目录一、实验背景二、实验目的三、实验内容四、相关知识五、实验代码一、实验背景离散数学前几课时课时便是关于命题逻辑的学习,谈到命题逻辑的各种指派与对应值,比较详细且直观的便是真值表表示,那如果现在给出一个命题公式,我们该如何通过编程的方式实现一个能够自动生成给出命题公式所对应的真值表呢?离散数学课便设计了实验让我们探索如何实现此功能,在加深对命题公式理解的同时提高编程能力,培养编程思维。二、实验目的
- 数据结构转换与离散点生成
在C++开发中,我们常常需要在不同的数据结构之间进行转换,以满足特定库或框架的要求。本文将探讨如何将std::vector转换为QVector,并生成特定范围内的二维离散点。生成二维离散点我们首先需要生成一系列二维离散点,这些点取自y=by=by=b,xxx在[−a,a][-a,a][−a,a]范围内。以下是示例代码:#include#includeintmain(){doublea=5.0;//
- 基于深度学习的特征映射模块(FMS)实现与分析
RockLiu@805
深度学习模块机器视觉深度学习人工智能
基于深度学习的特征映射模块(FMS)实现与分析引言在现代计算机视觉任务中,特征提取是至关重要的一步。传统的CNN虽然在很多任务上表现良好,但面对复杂图像信息时仍显得力不从心。为了解决这一问题,研究者们不断探索新的方法和技术,以更高效地捕捉和表示图像中的特征。今天,我将带大家深入探索一个结合了深度学习与小波变换的特征映射模块(FMS)。该模块不仅利用了传统的卷积神经网络(CNN),还引入了离散小波变
- python实现SM2算法
闲人编程
密码学与信息安全python算法开发语言SM2国密密码学加解密
目录SM2算法介绍SM2算法的数学基础SM2密钥生成过程SM2签名和验证流程Python面向对象实现SM2加解密算法代码解释场景应用:数字证书签署总结SM2算法介绍SM2是中国国家密码管理局发布的国家密码标准(GB/T32918-2016)中的公钥密码算法,基于椭圆曲线离散对数问题,具有较高的安全性和性能。它在数字签名、密钥交换和加密等应用中都能提供安全的解决方案。SM2与国际通用的椭圆曲线加密算
- 【AI中的数学-人工智能的数学基石】数学:构建AI大厦的基石
云博士的AI课堂
AI中的数学人工智能AI数学AI中的数学AI数学大模型
第一章人工智能的数学基石第四节数学:构建AI大厦的基石数学是人工智能(AI)的核心基石,贯穿于AI算法的设计、模型的构建以及系统的优化过程中。正如建筑大厦需要坚实的地基,AI的发展依赖于深厚的数学理论和方法。理解和掌握这些数学原理,不仅能够提升对AI技术的理解,还能为创新和解决复杂问题提供强有力的工具。本节将系统性地探讨支撑AI的主要数学领域,包括线性代数、微积分、概率与统计、优化理论以及离散数学
- FFmpeg 的算法体系
lianghu666
音视频硬件Linuxffmpeg算法linux
️一、FFmpeg核心算法体系与作用1.编解码算法编解码是FFmpeg的核心能力,通过libavcodec实现音视频的压缩与还原。视频编码算法帧间预测:通过运动估计(菱形搜索、全搜索法)减少时间冗余,支持P帧(前向预测)和B帧(双向预测)变换与量化:采用整数离散余弦变换(DCT)将空域信号转为频域,再通过量化舍弃高频信息(H.264/H.265使用)熵编码:对残差数据采用CABAC(上下文自适应二
- Abel 变换,离散型分部积分
_Equinox
数据结构与算法数学随笔数学算法
文章目录零、引入:分部积分一、Abel变换1.1Abel变换1.2证明二、一些比较浅显的应用2.1等差乘等比型求和2.2平方求和公式2.3不等式证明三、一些算法题的式子优化3.13500.将数组分割为子数组的最小代价3.2D.ArraySplitting3.3300.任务安排1零、引入:分部积分我们不难表示出上图中的面积A1和A2A1=∫y1y2xdyA2=∫x1x2ydxA1+A2=x2y2−x
- RA信号处理
gihigo1998
信号处理
ra_snr_gui.m作用:统计不同信噪比下,五种信号的峰值旁瓣比RA和低高频均值比RM,绘制结果,参考图3.11和3.12DFCW_RA_SNR.m作用:产生正交离散频率编码信号,并计算峰值旁瓣比RA和低高频均值比RMLFM_RA_SNR.m作用:产生线性调频信号,并计算峰值旁瓣比RA和低高频均值比RMOFDMLFM_RA_SNR.m作用:产生正交频分线性调频信号,并计算峰值旁瓣比RA和低高频
- 基于DWT的音频水印算法
gihigo1998
音视频算法网络
基于离散小波变换(DWT)的音频水印算法是一种结合信号处理与信息隐藏的技术,旨在将版权信息或标识隐蔽地嵌入音频信号中,同时保证不可感知性和鲁棒性。以下是该算法的核心步骤及关键技术点:1.算法基本原理DWT的作用:将音频信号分解为不同频率的子带(近似系数和细节系数),利用人耳听觉特性(如对低频敏感、对高频不敏感)选择嵌入位置。水印嵌入策略:通过修改小波系数(如量化、奇偶校验)嵌入水印,确保水印对常规
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found