哈希表 参考:http://blog.csdn.net/yang_yulei/article/details/46337405
理想的情况是希望不经过任何比较,一次存取便能得到所查的记录,那就必须在记的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和一个唯一的存储位置相对应。因而在查找时,只要根据这个对应关系f找到给定值K的像f(K)。由此,不需要进行比较便可直接取得所查记录。在此,我们称这个对应关系为哈希(Hash)函数,按这个思想建立的表为哈希表。
在哈希表中对于不同的关键字可能得到同一哈希地址,这种现象称做冲突。在一般情况下,冲突只能尽可能地减少,而不能完全避免。因为哈希函数是从关键字集合到地址集合的映像。通常关键字的集合比较大,它的元素包括所有可能的关键字,而地址集合的元素仅为哈希表中的地址值。在一般情况下,哈希函数是一个压缩映像函数,这就不可避免的要产生冲突。
哈希树(HashTree)算法就是要提供一种在理论上和实际应用中均能有效地处理冲突的方法。一般的哈希(Hash)算法都是O(1)的,而且基本是以空间换时间。这很容易导致对存储空间无限制的需求。本文中哈希树(HashTree)算法在实际操作中使用了一些技巧使得对空间的需求控制在一定范围内。即空间需求仅和所需要存储的对象个数有关,不会无限制地“膨胀”下去。
哈希树的理论基础
【质数分辨定理】
简单地说就是:n个不同的质数可以“分辨”的连续整数的个数和他们的乘积相等。“分辨”就是指这些连续的整数不可能有完全相同的余数序列。
(这个定理的证明详见:http://wenku.baidu.com/view/16b2c7abd1f34693daef3e58.html)
例如:
从2起的连续质数,连续10个质数就可以分辨大约M(10) =2*3*5*7*11*13*17*19*23*29= 6464693230 个数,已经超过计算机中常用整数(32bit)的表达范围。连续100个质数就可以分辨大约M(100) = 4.711930 乘以10的219次方。
而按照目前的CPU水平,100次取余的整数除法操作几乎不算什么难事。在实际应用中,整体的操作速度往往取决于节点将关键字装载内存的次数和时间。一般来说,装载的时间是由关键字的大小和硬件来决定的;在相同类型关键字和相同硬件条件下,实际的整体操作时间就主要取决于装载的次数。他们之间是一个成正比的关系。
插入
我们选择质数分辨算法来建立一棵哈希树。
选择从2开始的连续质数来建立一个十层的哈希树。第一层结点为根结点,根结点下有2个结点;第二层的每个结点下有3个结点;依此类推,即每层结点的子节点数目为连续的质数。到第十层,每个结点下有29个结点。
同一结点中的子结点,从左到右代表不同的余数结果。
例如:第二层结点下有三个子节点。那么从左到右分别代表:除3余0,除3余1,除3余2.
对质数进行取余操作得到的余数决定了处理的路径。
结点结构:结点的关键字(在整个树中是唯一的),结点的数据对象,结点是否被占据的标志位(标志位为真时,关键字才被认为是有效的),和结点的子结点数组。
哈希树的节点结构
[cpp] view plain copy
(如果在建立当初就建立所有的节点,那么所消耗的计算时间和磁盘空间是巨大的。在实际使用当中,只需要初始化根节点就可以开始工作。子节点的建立是在有更多的数据进入到哈希树中的时候建立的。因此可以说哈希树和其他树一样是一个动态结构。)
下面我们以随机的10个数的插入为例,来图解HashTree的插入过程,这个史上最清晰的图解,你一定能看的明白^_^
有读者可能有疑问,如果一直冲突下去怎么办?首先,若关键字是整型,我们的10层哈希树完全可以分辨出来它们,这是质数分辨算法决定的。
(我们其实也可以把所有的键-值节点放在哈希树的第10层叶节点处,这第10层的满节点数就包含了所有的整数个数,但是如果这样处理的话,所有的非叶子节点作为键-值节点的索引,这样使树结构庞大,浪费空间)
【这里没有说的太清楚,此图是以2开始的连续质数创建的,即:从上到下的层级中的每个节点中的子树个数为2、3、5、7、11、13、17、19、23、29。第一层中的每个节点的子树个数为2,第二层中的每个节点子树个数为5.。。。。
上图中的子树上的数字,是其父节点的子树指针数组的索引值】
查找
哈希树的节点查找过程和节点插入过程类似,就是对关键字用质数序列取余,根据余数确定下一节点的分叉路径,直到找到目标节点。
如上图,最小”哈希树(HashTree)在从4G个对象中找出所匹配的对象,比较次数不超过10次。也就是说:最多属于O(10)。在实际应用中,调整了质数的范围,使得比较次数一般不超过5次。也就是说:最多属于O(5)。因此可以根据自身需要在时间和空间上寻求一个平衡点。
删除
哈希树的节点删除过程也很简单,哈希树在删除的时候,并不做任何结构调整。
只是先查到到要删除的节点,然后把此节点的“占位标记”置为false即可(即表示此节点为空节点,但并不进行物理删除)。
优点
1、结构简单
从哈希树的结构来说,非常的简单。每层节点的子节点个数为连续的质数。子节点可以随时创建。因此哈希树的结构是动态的,也不像某些哈希算法那样需要长时间的初始化过程。哈希树也没有必要为不存在的关键字提前分配空间。
需要注意的是哈希树是一个单向增加的结构,即随着所需要存储的数据量增加而增大。即使数据量减少到原来的数量,但是哈希树的总节点数不会减少。这样做的目的是为了避免结构的调整带来的额外消耗。
2、查找迅速
从算法过程我们可以看出,对于整数,哈希树层级最多能增加到10。因此最多只需要十次取余和比较操作,就可以知道这个对象是否存在。这个在算法逻辑上决定了哈希树的优越性。
一般的树状结构,往往随着层次和层次中节点数的增加而导致更多的比较操作。操作次数可以说无法准确确定上限。而哈希树的查找次数和元素个数没有关系。如果元素的连续关键字总个数在计算机的整数(32bit)所能表达的最大范围内,那么比较次数就最多不会超过10次,通常低于这个数值。
3、结构不变
从删除算法中可以看出,哈希树在删除的时候,并不做任何结构调整。这个也是它的一个非常好的优点。常规树结构在增加元素和删除元素的时候都要做一定的结构调整,否则他们将可能退化为链表结构,而导致查找效率的降低。哈希树采取的是一种“见缝插针”的算法,从来不用担心退化的问题,也不必为优化结构而采取额外的操作,因此大大节约了操作时间。
缺点
1、非排序性
哈希树不支持排序,没有顺序特性。如果在此基础上不做任何改进的话并试图通过遍历来实现排序,那么操作效率将远远低于其他类型的数据结构。
字典树 参考:http://blog.csdn.net/jiutianhe/article/details/8076835
Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高。
Trie的核心思想是空间换时间。利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。
它有3个基本性质:
题目:给你100000个长度不超过10的单词。对于每一个单词,我们要判断他出没出现过,如果出现了,求第一次出现在第几个位置。
分析:这题当然可以用hash来解决,但是本文重点介绍的是trie树,因为在某些方面它的用途更大。比如说对于某一个单词,我们要询问它的前缀是否出现过。这样hash就不好搞了,而用trie还是很简单。
假设我要查询的单词是abcd,那么在他前面的单词中,以b,c,d,f之类开头的我显然不必考虑。而只要找以a开头的中是否存在abcd就可以了。同样的,在以a开头中的单词中,我们只要考虑以b作为第二个字母的,一次次缩小范围和提高针对性,这样一个树的模型就渐渐清晰了。
好比假设有b,abc,abd,bcd,abcd,efg,hii 这6个单词,我们构建的树就是如下图这样的:
ok,如上图所示,对于每一个节点,从根遍历到他的过程就是一个单词,如果这个节点被标记为红色,就表示这个单词存在,否则不存在。
那么,对于一个单词,我只要顺着他从根走到对应的节点,再看这个节点是否被标记为红色就可以知道它是否出现过了。把这个节点标记为红色,就相当于插入了这个单词。
这样一来我们查询和插入可以一起完成(重点体会这个查询和插入是如何一起完成的,稍后,下文具体解释),所用时间仅仅为单词长度,在这一个样例,便是10。
我们可以看到,trie树每一层的节点数是26^i级别的。所以为了节省空间。我们用动态链表,或者用数组来模拟动态。空间的花费,不会超过单词数×单词长度。
已知n个由小写字母构成的平均长度为10的单词,判断其中是否存在某个串为另一个串的前缀子串。下面对比3种方法:
Trie树是简单但实用的数据结构,通常用于实现字典查询。我们做即时响应用户输入的AJAX搜索框时,就是Trie开始。本质上,Trie是一颗存储多个字符串的树。相邻节点间的边代表一个字符,这样树的每条分支代表一则子串,而树的叶节点则代表完整的字符串。和普通树不同的地方是,相同的字符串前缀共享同一条分支。下面,再举一个例子。给出一组单词,inn, int, at, age, adv, ant, 我们可以得到下面的Trie:
可以看出:
查询操纵非常简单。比如要查找int,顺着路径i -> in -> int就找到了。
搭建Trie的基本算法也很简单,无非是逐一把每则单词的每个字母插入Trie。插入前先看前缀是否存在。如果存在,就共享,否则创建对应的节点和边。比如要插入单词add,就有下面几步: