点这里查看上篇文章
Github:kobiso/CBAM-tensorflow
下面这个代码是再通道注意力模块时,将平均和最大池化后得到得描述子分别输入MLP,从代码中也可以看到连个描述子得MLP权重共享。
def cbam_block(input_feature, index, reduction_ratio=8):
with tf.variable_scope('cbam_%s' % index):
attention_feature = channel_attention(input_feature, index, reduction_ratio)
attention_feature = spatial_attention(attention_feature, index)
print("hello CBAM")
return attention_feature
def channel_attention(input_feature, index, reduction_ratio=8):
kernel_initializer = tf.contrib.layers.variance_scaling_initializer()
bias_initializer = tf.constant_initializer(value=0.0)
with tf.variable_scope('ch_attention_%s' % index):
feature_map_shape = input_feature.get_shape()
channel = input_feature.get_shape()[-1]
avg_pool = tf.nn.avg_pool(value=input_feature,
ksize=[1, feature_map_shape[1], feature_map_shape[2], 1],
strides=[1, 1, 1, 1],
padding='VALID')
assert avg_pool.get_shape()[1:] == (1, 1, channel)
avg_pool = tf.layers.dense(inputs=avg_pool,
units=channel//reduction_ratio,
activation=tf.nn.relu,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
name='mlp_0',
reuse=None)
assert avg_pool.get_shape()[1:] == (1, 1, channel//reduction_ratio)
avg_pool = tf.layers.dense(inputs=avg_pool,
units=channel,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
name='mlp_1',
reuse=None)
assert avg_pool.get_shape()[1:] == (1, 1, channel)
max_pool = tf.nn.max_pool(value=input_feature,
ksize=[1, feature_map_shape[1], feature_map_shape[2], 1],
strides=[1, 1, 1, 1],
padding='VALID')
assert max_pool.get_shape()[1:] == (1, 1, channel)
max_pool = tf.layers.dense(inputs=max_pool,
units=channel//reduction_ratio,
activation=tf.nn.relu,
name='mlp_0',
reuse=True)
assert max_pool.get_shape()[1:] == (1, 1, channel//reduction_ratio)
max_pool = tf.layers.dense(inputs=max_pool,
units=channel,
name='mlp_1',
reuse=True)
assert max_pool.get_shape()[1:] == (1, 1, channel)
scale = tf.nn.sigmoid(avg_pool + max_pool)
return input_feature * scale
def spatial_attention(input_feature, index):
kernel_size = 7
kernel_initializer = tf.contrib.layers.variance_scaling_initializer()
with tf.variable_scope("sp_attention_%s" % index):
avg_pool = tf.reduce_mean(input_feature, axis=3, keepdims=True)
assert avg_pool.get_shape()[-1] == 1
max_pool = tf.reduce_max(input_feature, axis=3, keepdims=True)
assert max_pool.get_shape()[-1] == 1
# 按通道拼接
concat = tf.concat([avg_pool, max_pool], axis=3)
assert concat.get_shape()[-1] == 2
concat = slim.conv2d(concat, num_outputs=1,
kernel_size=[kernel_size, kernel_size],
padding='SAME',
activation_fn=tf.nn.sigmoid,
weights_initializer=kernel_initializer,
scope='conv')
assert concat.get_shape()[-1] == 1
return input_feature * concat