spark-env.sh配置参数详解

Spark记录-spark-env.sh配置

环境变量 含义
SPARK_MASTER_IP master实例绑定的IP地址,例如,绑定到一个公网IP
SPARK_MASTER_PORT mater实例绑定的端口(默认7077)
SPARK_MASTER_WEBUI_PORT master web UI的端口(默认8080)
SPARK_MASTER_OPTS master专用配置属性,格式如”-Dx=y” (默认空),可能的选项请参考下面的列表。
SPARK_LOCAL_DIRS Spark的本地工作目录,包括:映射输出的临时文件和RDD保存到磁盘上的临时数据。这个目录需要快速访问,最好设成本地磁盘上的目录。也可以通过使用逗号分隔列表,将其设成多个磁盘上的不同路径。
SPARK_WORKER_CORES 本机上Spark应用可以使用的CPU core上限(默认所有CPU core)
SPARK_WORKER_MEMORY 本机上Spark应用可以使用的内存上限,如:1000m,2g(默认为本机所有内存减去1GB);注意每个应用单独使用的内存大小要用 spark.executor.memory 属性配置的。
SPARK_WORKER_PORT Spark worker绑定的端口(默认随机)
SPARK_WORKER_WEBUI_PORT worker web UI端口(默认8081)
SPARK_WORKER_INSTANCES 每个slave机器上启动的worker实例个数(默认:1)。如果你的slave机器非常强劲,可以把这个值设为大于1;相应的,你需要设置SPARK_WORKER_CORES参数来显式地限制每个worker实例使用的CPU个数,否则每个worker实例都会使用所有的CPU。
SPARK_WORKER_DIR Spark worker的工作目录,包括worker的日志以及临时存储空间(默认:${SPARK_HOME}/work)
SPARK_WORKER_OPTS worker的专用配置属性,格式为:”-Dx=y”,可能的选项请参考下面的列表。
SPARK_DAEMON_MEMORY Spark master和worker后台进程所使用的内存(默认:1g)
SPARK_DAEMON_JAVA_OPTS Spark master和workers后台进程所使用的JVM选项,格式为:”-Dx=y”(默认空)
SPARK_PUBLIC_DNS Spark master和workers使用的公共DNS(默认空)

注意: 启动脚本目前不支持Windows。如需在Windows上运行,请手工启动master和workers。

SPARK_MASTER_OPTS支持以下属性:

属性名 默认值 含义
spark.deploy.retainedApplications 200 web UI上最多展示几个已结束应用。更早的应用的数将被删除。
spark.deploy.retainedDrivers 200 web UI上最多展示几个已结束的驱动器。更早的驱动器进程数据将被删除。
spark.deploy.spreadOut true 独立部署集群的master是否应该尽可能将应用分布到更多的节点上;设为true,对数据本地性支持较好;设为false,计算会收缩到少数几台机器上,这对计算密集型任务比较有利。
spark.deploy.defaultCores (无限制) Spark独立模式下应用程序默认使用的CPU个数(没有设置spark.cores.max的情况下)。如果不设置,则为所有可用CPU个数(除非设置了spark.cores.max)。如果集群是共享的,最好将此值设小一些,以避免用户占满整个集群。
spark.worker.timeout 60 如果master没有收到worker的心跳,那么将在这么多秒之后,master将丢弃该worker。

SPARK_WORKER_OPTS支持以下属性:

属性名 默认值 含义
spark.worker.cleanup.enabled false 是否定期清理 worker 和应用的工作目录。注意,该设置仅在独立模式下有效,YARN有自己的清理方式;同时,只会清理已经结束的应用对应的目录。
spark.worker.cleanup.interval 1800 (30 minutes) worker清理本地应用工作目录的时间间隔(秒)
spark.worker.cleanup.appDataTtl 7 * 24 * 3600 (7 days) 清理多久以前的应用的工作目录。这个选项值将取决于你的磁盘总量。spark应用会将日志和jar包都放在其对应的工作目录下。随着时间流逝,应用的工作目录很快会占满磁盘,尤其是在你的应用提交比较频繁的情况下。

转载自:https://www.cnblogs.com/xinfang520/p/8038306.html

你可能感兴趣的:(大数据,spark,spark-env)