安装 TensorFlow 2.0 Alpha
本文仅仅介绍 Windows 的安装方式:
pip install tensorflow==2.0.0-alpha0
# cpu 版本pip install tensorflow==2.0.0-alpha0
# gpu 版本
针对 GPU 版的安装完毕后还需要设置环境变量:
SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH%
SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64;%PATH%
SET PATH=C:\tools\cuda\bin;%PATH%
更多细节与其他平台的安装教程见:GPU support
新功能简介
tf.control_dependencies()
不再被需要,因为 TensorFlow 的所有代码都是有序执行的。借助 @tf.function
和 AutoGraph
实现更加 Pythonic 的编程方式。比如,下面的等价形式:
for/while -> tf.while_loop (break and continue are supported)
if -> tf.cond
for _ in dataset -> dataset.reduce
autorgraph 支持控制流的任意嵌套, 这使得能够以高性能、简洁的方式实现许多复杂的 ML 程序, 如序列模型、增强学习、自定义训练循环等。
将代码重构(Refactor)为更小的函数
一般情况下, 不需要用 tf.function
来装饰这些较小的函数中的每一个;只使用 tf.function
来装饰高级计算-例如, 训练的一个步骤, 或者模型的正向传递。
使用 keras 的 layers 和 models 管理变量
keras 的 layers
和 models
提供了方便的 variables
和 trainable_variables
属性, 这些属性递归地收集所有因变量。这样可以很容易地在本地将变量管理到正在使用的位置。对比如下:
普通的 tf:
def dense(x, W, b):
return tf.nn.sigmoid(tf.matmul(x, W) + b)
@tf.function
def multilayer_perceptron(x, w0, b0, w1, b1, w2, b2 ...):
x = dense(x, w0, b0)
x = dense(x, w1, b1)
x = dense(x, w2, b2)
...
# You still have to manage w_i and b_i, and their shapes are defined far away from the code.
带有 Keras 的 tf:
# Each layer can be called, with a signature equivalent to linear(x)
layers = [tf.keras.layers.Dense(hidden_size, activation=tf.nn.sigmoid) for _ in range(n)]
perceptron = tf.keras.Sequential(layers)
# layers[3].trainable_variables => returns [w3, b3]
# perceptron.trainable_variables => returns [w0, b0, ...]
Keras layers/models inherit from tf.train.Checkpointable
and are integrated with @tf.function
, which makes it possible to directly checkpoint or export SavedModels from Keras objects. You do not necessarily have to use Keras's .fit()
API to take advantage of these integrations(兼容方式).
Here's a transfer learning example that demonstrates how Keras makes it easy to collect a subset of relevant variables. Let's say you're training a multi-headed model with a shared trunk:
trunk = tf.keras.Sequential([...])
head1 = tf.keras.Sequential([...])
head2 = tf.keras.Sequential([...])
path1 = tf.keras.Sequential([trunk, head1])
path2 = tf.keras.Sequential([trunk, head2])
# Train on primary dataset
for x, y in main_dataset:
with tf.GradientTape() as tape:
prediction = path1(x)
loss = loss_fn_head1(prediction, y)
# Simultaneously optimize trunk and head1 weights.
gradients = tape.gradients(loss, path1.trainable_variables)
optimizer.apply_gradients(gradients, path1.trainable_variables)
# Fine-tune second head, reusing the trunk
for x, y in small_dataset:
with tf.GradientTape() as tape:
prediction = path2(x)
loss = loss_fn_head2(prediction, y)
# Only optimize head2 weights, not trunk weights
gradients = tape.gradients(loss, head2.trainable_variables)
optimizer.apply_gradients(gradients, head2.trainable_variables)
# You can publish just the trunk computation for other people to reuse.
tf.saved_model.save(trunk, output_path)
联合 tf.data.Datasets
and @tf.function
When iterating over training data that fits in memory, feel free to use regular Python iteration. Otherwise, tf.data.Dataset
is the best way to stream training data from disk. Datasets are iterables (not iterators), and work just like other Python iterables in Eager mode. You can fully utilize dataset async prefetching/streaming features by wrapping your code in tf.function()
, which replaces Python iteration with the equivalent graph operations using AutoGraph.
@tf.function
def train(model, dataset, optimizer):
for x, y in dataset:
with tf.GradientTape() as tape:
prediction = model(x)
loss = loss_fn(prediction, y)
gradients = tape.gradients(loss, model.trainable_variables)
optimizer.apply_gradients(gradients, model.trainable_variables)
If you use the Keras .fit()
API, you won't have to worry about dataset iteration.
model.compile(optimizer=optimizer, loss=loss_fn)
model.fit(dataset)
AutoGraph with Python control flow 的优点
AutoGraph provides a way to convert data-dependent control flow into graph-mode equivalents like tf.cond
and tf.while_loop
.
One common place where data-dependent control flow appears is in sequence models. tf.keras.layers.RNN
wraps an RNN cell, allowing you to either statically or dynamically unroll the recurrence. For demonstration's sake, you could reimplement dynamic unroll as follows:
class DynamicRNN(tf.keras.Model):
def __init__(self, rnn_cell):
super(DynamicRNN, self).__init__(self)
self.cell = rnn_cell
def call(self, input_data):
# [batch, time, features] -> [time, batch, features]
input_data = tf.transpose(input_data, [1, 0, 2])
outputs = tf.TensorArray(tf.float32, input_data.shape[0])
state = self.cell.zero_state(input_data.shape[1], dtype=tf.float32)
for i in tf.range(input_data.shape[0]):
output, state = self.cell(input_data[i], state)
outputs = outputs.write(i, output)
return tf.transpose(outputs.stack(), [1, 0, 2]), state
Use tf.metrics
to aggregate data and tf.summary
to log it
To log summaries, use tf.summary
.(scalar|histogram|...
) and redirect it to a writer using a context manager. (If you omit the context manager, nothing will happen.) Unlike TF 1.x, the summaries are emitted directly to the writer; there is no separate "merge" op and no separate add_summary()
call, which means that the step
value must be provided at the callsite.
summary_writer = tf.summary.create_file_writer('/tmp/summaries')
with summary_writer.as_default():
tf.summary.scalar('loss', 0.1, step=42)
To aggregate data before logging them as summaries, use tf.metrics
. Metrics are stateful; they accumulate values and return a cumulative result when you call .result()
. Clear accumulated values with .reset_states()
.
def train(model, optimizer, dataset, log_freq=10):
avg_loss = tf.keras.metrics.Mean(name='loss', dtype=tf.float32)
for images, labels in dataset:
loss = train_step(model, optimizer, images, labels)
avg_loss.update_state(loss)
if tf.equal(optimizer.iterations % log_freq, 0):
tf.summary.scalar('loss', avg_loss.result(), step=optimizer.iterations)
avg_loss.reset_states()
def test(model, test_x, test_y, step_num):
loss = loss_fn(model(test_x), test_y)
tf.summary.scalar('loss', loss, step=step_num)
train_summary_writer = tf.summary.create_file_writer('/tmp/summaries/train')
test_summary_writer = tf.summary.create_file_writer('/tmp/summaries/test')
with train_summary_writer.as_default():
train(model, optimizer, dataset)
with test_summary_writer.as_default():
test(model, test_x, test_y, optimizer.iterations)
Visualize the generated summaries by pointing TensorBoard at the summary log directory: tensorboard --logdir /tmp/summaries
.
tf 2.x 下的 1.x
参考tf 1.x 与 2.x 的交互
如果你想要运行 1.X 的代码(except for contrib)在 TensorFlow 2.0 中无需修改代码的实现,仅仅做如下改变即可:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior() # 关掉 v2 版本
1. 取代 tf.Session.run
calls
每个 tf.Session.run
call 都应该被一个 python function 所取代:
- The
feed_dict
, andtf.placeholder
s becomes the function arguments. - The
fetches
become the function's return value.
You can step-through and debug the function using standard python tools like pdb
.
When you're satisfied that it works, add a tf.function
decorator to make it run efficiently, in graph mode. See the Autograph Guide, and the tf.function tutorial for more on how this works.
2. Use objects to track variables and losses
Use tf.Variable
instead of tf.get_variable
.
Every variable_scope
can be converted to a python obejct. Typically this will be a tf.keras.layers.Layer
, tf.keras.Model
or a tf.Module
.
If you need to aggregate lists of variables, like tf.Graph.get_collection(tf.GraphKeys.VARIABLES)
, use the .variables
and .trainable_variables
attributes of the Layer
and Model
objects.
These classes Layer
and Model
classes implement several other properties that remove the need for global collections. For example, their .losses
property replaces the tf.GraphKeys.LOSSES
collection.
See the keras guides for details.
Warning: Many tf.compat.v1
symbols use the global collections implicitly.
3. Upgrade your training loops
Use the highest level api that works for your use case: Prefer tf.keras.Model.fit
over building your own training loops.
These high level functions manage a lot of the low-level details that might be easy to miss if you write your own training loop. For example, they automatically collect the regularization losses, and set the training=True
argument when calling the model.
Use tf.data
datasets for data input. Thse objects are efficient, expressive, and integrate well with tensorflow.
They can be passed directly to the tf.keras.Model.fit
method.
model.fit(dataset, epochs=5)
They can be iterated over directly standard python:
for example_batch, label_batch in dataset:
break
import tensorflow as tf
import tensorflow.compat.v1 as tf_v1
tf.compat.v1 = tf_v1
Low-level variables & operator execution
We'll first look at handle TensorFlow 1.x code that is using lower-level variables and TensorFlow operators rather than higher-level layer APIs.
If your existing codebase falls into this category, your existing code probably uses variable scopes to control reuse, and creates variables with tf.get_variable
. You are also likely accessing collections either explicitly, or implicitly (with methods like tf.global_variables
and tf.losses.get_regularization_loss
)
Your code is likely using tf.placeholder
s to set up inputs to your graph and session.run
to execute it. You are also most likely initializing variables manually before you run the graph.
Below is a sample of how lower-level TensorFlow 1.x code implemented with these patterns looks:
Before converting
in_a = tf.placeholder(dtype=tf.float32, shape=(2))
in_b = tf.placeholder(dtype=tf.float32, shape=(2))
def forward(x):
with tf.variable_scope("matmul", reuse=tf.AUTO_REUSE):
W = tf.get_variable("W", initializer=tf.ones(shape=(2,2)),
regularizer=tf.contrib.layers.l2_regularizer(0.04))
b = tf.get_variable("b", initializer=tf.zeros(shape=(2)))
return x * train_data + b
out_a = model(in_a)
out_b = model(in_b)
reg_loss = tf.losses.get_regularization_loss(scope="matmul")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
outs = sess.run([out_a, out_b, reg_loss],
feed_dict={in_a: [1, 0], in_b: [0, 1]})
In the converted code:
- The variables are local python objects.
- The
forward
function still defines the calculation. - The
sess.run
call is replaced with a call toforward
- The optional
tf.function
decorator can be added for performance. - The regularizations are calculated manually, without referring to any global collection.
W = tf.Variable(tf.ones(shape=(2, 2)), name="W")
b = tf.Variable(tf.zeros(shape=(2)), name="b")
@tf.function
def forward(x):
return W * x + b
out_a = forward([1, 0])
print(out_a)
out_b = forward([0,1])
regularizer = tf.keras.regularizers.l2(0.02)
reg_loss = regularizer(W)
tf.Tensor(
[[1. 0.]
[1. 0.]], shape=(2, 2), dtype=float32)
No session or placeholders!
For tf.layers
based models
The tf.layers
module used to contain layer-functions that relied on variable_scopes
to define and reuse variables.
Before converting
def model(x, training, scope='model'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
x = tf.layers.conv2d(x, 32, 3, activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.04))
x = tf.layers.max_pooling2d(x, (2, 2), 1)
x = tf.layers.flatten(x)
x = tf.layers.dropout(x, 0.1, training=training)
x = tf.layers.dense(x, 64, activation=tf.nn.relu)
x = tf.layers.batch_normalization(x, training=training)
x = tf.layers.dense(x, 10, activation=tf.nn.softmax)
return x
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
After converting
The resulting code is below. For the converted model note:
- It was a simple stack of layers. So it fits neatly into a
tf.keras.Sequential
. - For more complex models see custom layers and models, and the functional api
- The model tracks the variables, and regularization losses.
- The conversion was one-to-one because there is a direct mapping from
tf.layers
totf.keras.layers
.
Most arguments stayed the same, the main differences are:
- The
training
argument is passed to each layer by the model when it runs. - The first argument to the function-layers, the input
x
, is gone because object layers separate building the model from calling the model.
Also note that:
- If you were using regularizers of initializers from
tf.contrib
these have more argument changes than others. - The code no longer writes to collections, so functions like
tf.losses.get_regularization_loss
will no longer return these values, potentially breaking your training loops.
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.02),
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation='softmax')
])
train_data = tf.ones(shape=(1, 28, 28, 1))
test_data = tf.ones(shape=(1, 28, 28, 1))
train_out = model(train_data, training=True)
print(train_out)
tf.Tensor([[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]], shape=(1, 10), dtype=float32)
test_out = model(test_data, training=False)
print(test_out)
tf.Tensor(
[[0.09657966 0.09668106 0.12381785 0.13422377 0.10953731 0.08846541
0.08248153 0.08863612 0.08141313 0.09816417]], shape=(1, 10), dtype=float32)
# Here are all the trainable variables.
len(model.trainable_variables)
8
# Here is the regularization loss.
model.losses
[]
Mixed variables & tf.layers
Your existing projects might mix lower-level TF 1.x variables and operations with higher-level tf.layers
. Sample code that does this in TF 1.x is shown below.
Before converting
def model(x, training, scope='model'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
W = tf.get_variable(
"W", dtype=tf.float32,
initializer=tf.ones(shape=x.shape),
regularizer=tf.contrib.layers.l2_regularizer(0.04),
trainable=True)
if training:
x = x + W
else:
x = x + W * 0.5
x = tf.layers.conv2d(x, 32, 3, activation=tf.nn.relu)
x = tf.layers.max_pooling2d(x, (2, 2), 1)
x = tf.layers.flatten(x)
return x
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
After converting
To convert this code, follow the pattern of mapping layers to layers as in the previous example.
The tf.variable_scope
is effectively a layer of its own. So rewrite it as a tf.keras.layers.Layer
. See the guide for details.
The general pattern is:
- Collect layer parameters in
__init__
. - Build the variables in
build
. - Execute the calculations in
call
, and return the result.
Some things to note:
-
Subclassed Keras models & layers need to run in both v1 graphs (no automatic control dependencies) and in eager mode
- So, wrap the
call()
in atf.function()
to get autograph and automatic control dependencies
- So, wrap the
-
Don't forget to accept a
training
argument tocall
.- Sometimes it is a
tf.Tensor
- Sometimes it is a python boolean.
- Sometimes it is a
-
Create model variables in constructor or
def build()
usingself.add_weight()
.- In
build
you have access to the input shape, so can create weights with matching shape. - Using
tf.keras.layers.Layer.add_weight
allows Keras to track regularization losses.
- In
-
Don't keep
tf.Tensors
in your objects.- They might get created either in a
tf.function
or in the eager context, and these tensors behave differently. - Use
tf.Variable
s for state, they are always usable from both contexts tf.Tensors
are only for intermediate values.
- They might get created either in a
# Create a custom layer for part of the model
class CustomLayer(tf.keras.layers.Layer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def build(self, input_shape):
self.w = self.add_weight(
shape=input_shape[1:],
dtype=tf.float32,
initializer=tf.keras.initializers.ones(),
regularizer=tf.keras.regularizers.l2(0.02),
trainable=True)
# Call method will sometimes get used in graph mode,
# training will get turned into a tensor
@tf.function
def call(self, inputs, training=None):
if training:
return inputs + self.w
else:
return inputs + self.w * 0.5
custom_layer = CustomLayer()
print(custom_layer([1]).numpy())
print(custom_layer([1], training=True).numpy())
[1.5]
[2.]
train_data = tf.ones(shape=(1, 28, 28, 1))
test_data = tf.ones(shape=(1, 28, 28, 1))
# Build the model including the custom layer
model = tf.keras.Sequential([
CustomLayer(input_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
])
train_out = model(train_data, training=True)
test_out = model(test_data, training=False)
A note on Slim & contrib.layers
A large amount of older TensorFlow 1.x code uses the Slim library, which was packaged with TensorFlow 1.x as tf.contrib.layers
. As a contrib
module, this is no longer available in TensorFlow 2.0, even in tf.compat.v1
. Converting code using Slim to TF 2.0 is more involved than converting repositories that use tf.layers
. In fact, it may make sense to convert your Slim code to tf.layers
first, then convert to Keras!
- Remove
arg_scopes
, all args need to be explicit - If you use them, split
normalizer_fn
andactivation_fn
into their own layers - Separable conv layers map to one or more different Keras layers (depthwise, pointwise, and separable Keras layers)
- Slim and
tf.layers
have different arg names & default values - Some args have different scales
- If you use Slim pre-trained models, try out
tf.keras.applications
or TFHub
Some tf.contrib
layers might not have been moved to core TensorFlow but have instead been moved to the TF add-ons package.