hive中有一个默认的库:
库名: default
库目录:hdfs://hdp20-01:9000/user/hive/warehouse
新建库:
create database db_order;
库建好后,在hdfs中会生成一个库目录:
hdfs://hdp20-01:9000/user/hive/warehouse/db_order.db
use db_order;
create table t_order(id string,create_timestring,amount float,uid string);
表建好后,会在所属的库目录中生成一个表目录
/user/hive/warehouse/db_order.db/t_order
只是,这样建表的话,hive会认为表数据文件中的字段分隔符为 ^A
正确的建表语句为:
create table t_order(id string,create_timestring,amount float,uid string)
row format delimited
fields terminated by ',';
这样就指定了,我们的表数据文件中的字段分隔符为 ","
drop table t_order;
删除表的效果是:
hive会从元数据库中清除关于这个表的信息;
hive还会从hdfs中删除这个表的表目录;
内部表(MANAGED_TABLE):表目录按照hive的规范来部署,位于hive的仓库目录/user/hive/warehouse中
外部表(EXTERNAL_TABLE):表目录由建表用户自己指定
create external tablet_access(ip string,url string,access_time string)
row format delimited
fields terminated by ','
location '/access/log';
外部表和内部表的特性差别:
1、内部表的目录在hive的仓库目录中 VS 外部表的目录由用户指定
2、drop一个内部表时:hive会清除相关元数据,并删除表数据目录
3、drop一个外部表时:hive只会清除相关元数据;
一个hive的数据仓库,最底层的表,一定是来自于外部系统,为了不影响外部系统的工作逻辑,在hive中可建external表来映射这些外部系统产生的数据目录;
然后,后续的etl操作,产生的各种表建议用managed_table
分区表的实质是:在表目录中为数据文件创建分区子目录,以便于在查询时,MR程序可以针对分区子目录中的数据进行处理,缩减读取数据的范围。
比如,网站每天产生的浏览记录,浏览记录应该建一个表来存放,但是,有时候,我们可能只需要对某一天的浏览记录进行分析
这时,就可以将这个表建为分区表,每天的数据导入其中的一个分区;
当然,每日的分区目录,应该有一个目录名(分区字段)
1.2.4.1. 一个分区字段的实例:
示例如下:
1、创建带分区的表
create table t_access(ip string,url string,access_time string) partitioned by(dt string) row format delimited fields terminated by ','; |
注意:分区字段不能是表定义中的已存在字段
2、向分区中导入数据
load data localinpath '/root/access.log.2017-08-04.log' into table t_accesspartition(dt='20170804');
load data localinpath '/root/access.log.2017-08-05.log' into table t_accesspartition(dt='20170805');
3、针对分区数据进行查询
a、统计8月4号的总PV:
select count(*) from t_access where dt='20170804';
实质:就是将分区字段当成表字段来用,就可以使用where子句指定分区了
b、统计表中所有数据总的PV:
select count(*) from t_access;
实质:不指定分区条件即可
1.2.4.2. 多个分区字段示例
建表:
create table t_partition(id int,namestring,age int)
partitioned by(departmentstring,sex string,howold int)
row format delimited fields terminated by',';
导数据:
load data localinpath '/root/p1.dat' into table t_partition partition(department='xiangsheng',sex='male',howold=20);
可以通过已存在表来建表:
1、create tablet_user_2 like t_user;
新建的t_user_2表结构定义与源表t_user一致,但是没有数据
2、在建表的同时插入数据
create table t_access_user as select ip,url from t_access; |
t_access_user会根据select查询的字段来建表,同时将查询的结果插入新表中
方式1:导入数据的一种方式:
手动用hdfs命令,将文件放入表目录;
方式2:在hive的交互式shell中用hive命令来导入本地数据到表目录
hive>load data local inpath '/root/order.data.2' into table t_order;
方式3:用hive命令导入hdfs中的数据文件到表目录
hive>load data inpath'/access.log.2017-08-06.log' into table t_access partition(dt='20170806');
注意:导本地文件和导HDFS文件的区别:
本地文件导入表:复制
hdfs文件导入表:移动
1、将hive表中的数据导入HDFS的文件
insert overwrite directory'/root/access-data'
row format delimited fields terminatedby ','
select * from t_access;
2、将hive表中的数据导入本地磁盘文件
insert overwrite local directory '/root/access-data'
row format delimited fields terminatedby ','
select * from t_access limit 100000;
HIVE支持很多种文件格式: SEQUENCEFILE | TEXT FILE | PARQUET FILE | RC FILE
create table t_pq(movie string,rateint) stored as textfile;
create table t_pq(movie string,rateint) stored as sequencefile;
create table t_pq(movie string,rate int) stored as parquetfile;
演示:
1、先建一个存储文本文件的表
create table t_access_text(ip string,url string,access_time string)
row format delimited fields terminated by','
stored as textfile;
导入文本数据到表中:
load data local inpath'/root/access-data/000000_0' into table t_access_text;
2、建一个存储sequence file文件的表:
create table t_access_seq(ip string,urlstring,access_time string)
stored as sequencefile;
从文本表中查询数据插入sequencefile表中,生成数据文件就是sequencefile格式的了:
insert into t_access_seq
select * from t_access_text;
3、建一个存储parquet file文件的表:
create table t_access_parq(ip string,urlstring,access_time string)
stored as parquetfile;