- Python 数据分析实战:电商平台用户行为洞察与营销策略优化
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集与导入2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1用户行为随时间的变化2.4.2商品关联分析2.4.3用户购买转化率分析2.4.4用户价值分析(RFM模型)三、主要的代码难点解析3.1数据收集与导入3.2数据清洗-时间戳处理3.3数据分析-商品关联分析3.4数据分析-用户购买转化率分析3.5数据分析-用户价值分析(RFM模型)四、可能改进的代
- 网络通信安全:全面探索与深入分析
baimao__沧海
安全数据库sqlserversqlandroidweb安全
**摘要:**本文全面探索网络通信安全相关内容。首先阐述网络通信安全的基本概念与原理,包括网络通信模型、安全目标以及加密技术基础。接着详细分析其面临的威胁,涵盖恶意软件(病毒、蠕虫、特洛伊木马)、网络攻击(DoS/DDoS、网络嗅探、SQL注入)和社会工程学攻击等。然后介绍防护机制,如防火墙、IDS与IPS、VPN、数据加密技术应用、身份认证与访问控制等。还论述了网络通信安全在企业、金融、政府领域
- 迪威 3D 模型发布系统:制造业产品展示革新利器
3D小将
联讯软件迪威模型3d3d模型发布系统建站系统制造业
在竞争激烈的制造业领域,如何将产品全方位、直观地呈现给客户,成为企业脱颖而出的关键。传统的产品展示方式往往受限于平面资料或有限的实物展示,难以让客户深入了解产品的复杂结构与精妙细节。迪威3D模型发布系统的问世,为制造业企业带来了革命性的产品展示解决方案,开启了高效、立体的产品推广新篇章。一、沉浸式3D模型展示,让产品细节纤毫毕现制造业产品通常具有复杂的构造与精密的工艺,这些关键信息在传统展示中极易
- ST-Align:一个包含430万训练样本,涵盖了15种细粒度多模态数据集
数据集
2025-01-15,由北航大学、合肥工业大学、中科院信息工程研究所和美团等机构联合创建介绍了一种名为LLaVA-ST的多模态大型语言模型。该模型配备了一个名为ST-Align的数据集,专为细粒度时空多模态理解设计。一、研究背景近年来,多模态大型语言模型(MLLMs)在多模态理解方面取得了显著进展,能够基于图像或视频生成对话或描述。然而,对于需要基于语言输入处理视觉坐标的细粒度多模态理解任务,现有
- PlanLLM: 首个支持开放词汇与封闭集任务的跨模态视频程序规划框架
数据集
2025年1月7号,由杨德杰、赵子敬、刘洋联合提出PlanLLM,一种基于可微调大型语言模型(LLM)的跨模态联合学习框架,用于解决视频程序规划任务。通过引入LLM增强规划模块和互信息最大化模块,PlanLLM突破了现有方法依赖封闭集标签和固定语义描述的限制,实现了对新步骤和任务的泛化能力。该方法在COIN、CrossTask、NIV三个基准数据集上取得显著性能提升,展现了其在弱监督学习中的有效性
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- Collab-Overcooked:专注于多智能体协作的语言模型基准测试平台
数据集
2025-02-27,由北京邮电大学和理想汽车公司联合创建。该平台基于《Overcooked-AI》游戏环境,设计了更具挑战性和实用性的交互任务,目的通过自然语言沟通促进多智能体协作。一、研究背景近年来,基于大型语言模型的智能体系统在复杂任务分解和规划方面展现出巨大潜力,成为自然语言处理领域的研究热点。然而,随着研究的深入,人们发现单个智能体在处理复杂任务时存在局限性,而多智能体系统通过协作能够显
- 书籍-《深度生成模型(第二版)》
书籍:DeepGenerativeModeling作者:JakubM.Tomczak出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《深度生成模型(第二版)》01书籍介绍本书是关于生成式AI背后模型的第一本全面著作,经过彻底修订,涵盖了所有主要类别的深度生成模型,包括混合模型、概率电路、自回归模型、基于流的模型、潜在变量模型、生成对抗网络(GANs)、混合模型、基于得分的
- vllm部署说明和注意事项
ai一小生
python人工智能持续部署
1、vllm所在docker镜像可去vllm官网提供的镜像地址拉取地址:UsingDocker—vLLMVllm镜像运行需要不同的cuda版本依赖,如上vllm/vllm-openai:v0.7.2需要cuda12.1方可运行。DeepSeek-R1-Distill-Qwen-32B可去modelscope下载:整体大小约为60GB部署DeepSeek-R1-Distill-Qwen-32B模型,
- 通过docker-compose部署qwen2-vl-7b模型
scutshijie
docker容器运维语言模型
docker-compose部署qwen2-vl-7b模型准备工作docker-compose.yml遇到的报错在ONE-API设置测试脚本准备工作1、安装较新版本的docker-compose2、安装docker-nvidia3、下载qwen2-vl-7b的模型文件,参考:https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct4、建议先仔细查
- s1K 数据集:是一个用于提升语言模型推理能力的高质量数据集。
数据集
2025-02-07,由斯坦福大学、华盛顿大学等研究机构创建了s1K数据集,该数据集包含1,000个精心挑选的问题,并配以推理轨迹和答案,为语言模型推理能力的提升提供了重要的数据基础。一、研究背景近年来,语言模型(LMs)在大规模预训练的基础上取得了显著进展,其性能提升主要依赖于训练时计算资源的增加。然而,随着模型规模的不断扩大,训练成本也急剧上升。为了在有限的资源下进一步提升模型性能,研究者们开
- ChatGPT智能聊天机器人实现
云端源想
chatgpt机器人
以下是一个从零实现类ChatGPT智能聊天机器人的完整开发指南,包含技术选型、核心代码逻辑和推荐学习资源:—云端平台整理一、技术架构与工具核心模型基座模型:HuggingFaceTransformers库(如GPT-2/GPT-3.5TurboAPI/LLaMA2)轻量化方案:微软DeepSpeed或MetaFairScale(降低显存占用)训练框架PyTorchLightning+Acceler
- 【面试经验】华为 AI软开 计算产品线(面经+时间线)
litterfinger
面试华为人工智能
一.岗位:AI软开二.时间线:投递08.09,机试08.28,测评08.29;面试均线上,一面09.12,二面09.27,三面09.29(本来是09.19线下二三面,但由于本人有事推迟)三.一面(50min)自我介绍简单介绍一下传统知识图谱建设和大模型对于知识的构建的差异和整体的趋势聊聊实习经历中的提示工程和sft具体的工作AI的一个发展历史流程和相关算法的引进知识图谱建设的总体流程回顾机试:老鼠
- Python学习日记-第二十九天-tcp(客户端)
差点长成吴彦祖
pythonpandastcp/ip网络
系列文章目录tcp介绍tcp特点tcp客户端一、tcp介绍Tcp协议,传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC793定义TCP通信需要经过创建连接、传输数据、终止连接三个步骤TCP通信模型中,在通信开始之前,一定要先建立相关的链接,才能发送数据,类似于生活中的“打电话”(注:之前学习的udp,在通信前,不需要建立相关的链接,只需要发送数据即可,类似于“写
- 探索大模型应用:构建基于检索的RAG实战指南
李逍遥猿
人工智能计算机视觉microsoftAIGC开源深度学习神经网络
在AI技术的浪潮中,大模型以其强大的问题回答能力,正逐渐渗透到各行各业,成为推动行业发展的新引擎。然而,大模型并非万能,它在实时性和私有领域知识覆盖上存在局限。为了克服这些限制,本文将带你深入了解如何利用检索增强生成模型(RAG)来扩展大模型的能力,并通过一个实战案例,展示如何构建一个基于RAG的AI知识库。一、大模型的局限与RAG的机遇大模型虽然在处理通用问题上表现出色,但在面对实时数据和私有领
- MVC/MVP/MVVM框架学习总结(二)
每次的天空
mvc学习java
上次已经了解到MVC的知识,现在是扩展实现MVP/MVVM的框架改进本身项目MVVM框架即Model-View-ViewModel框架,是一种软件架构设计模式,以下是具体介绍:核心组件Model(模型):代表应用程序的数据结构和业务逻辑,负责数据的存储、检索、验证和处理,定义业务规则和算法,是应用程序的数据核心。比如在一个电商应用中,商品数据、用户订单数据等的存储和相关逻辑处理都属于Model层。
- 开源模型应用落地-Qwen2-VL-7B-Instruct-vLLM-OpenAI API Client调用
开源技术探险家
开源大语言模型-新手试炼深度学习AI编程AIGC
一、前言学习Qwen2-VL,为我们打开了一扇通往先进人工智能技术的大门。让我们能够深入了解当今最前沿的视觉语言模型的工作原理和强大能力。这不仅拓宽了我们的知识视野,更让我们站在科技发展的潮头,紧跟时代的步伐。Qwen2-VL具有卓越的图像和视频理解能力,以及多语言支持等特性。学习它可以提升我们处理复杂视觉信息的能力,无论是在学术研究中分析图像数据、解读视频内容,还是在实际工作中进行文档处理、解决
- 当大模型训练遇上“双向飙车”:DeepSeek开源周 DualPipe解析指南
来自于狂人
人工智能gpu算力算法系统架构
前言在大模型训练中,传统流水线并行因单向数据流和通信延迟的限制,导致GPU利用率不足60%,成为算力瓶颈。DeepSeek团队提出的DualPipe双向流水线架构,通过双向计算流与计算-通信重叠的创新设计,将前向与反向传播拆解为“对称轨道”,使GPU可“边读边写、边算边传”,将流水线空闲时间压缩超50%。结合显存优化技术,其显存占用仅为传统方法的1/8,GPU利用率提升至92%,单epoch训练时
- DeepSeek写的还是人写的?用AI识别AI的底层逻辑与未来博弈 ——从“真假美猴王”到人机共生的技术革命
星落无尘
人工智能deeplearningAIGC
引言:当AI学会“伪装人类”中国自研大模型DeepSeek其生成的网文被读者评价“文笔至少中上级”,甚至有文学教授惊叹“AI的诗句比我一辈子写的更惊艳”。但随之而来的是一场“身份危机”:当AI文本与人类作品愈发相似,如何分辨文字背后的灵魂?本文将从技术检测原理、人机本质差异、伦理挑战三个维度,揭开AI写作识别的秘密。一、AI检测技术:以AI之矛攻AI之盾1.Fast-DetectGPT:改写比对算
- ChatGPT、DeepSeek、Grok 三者对比:AI 语言模型的博弈与未来
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能技术的飞速发展,AI语言模型已经成为人机交互、内容创作、代码生成、智能问答等领域的重要工具。其中,ChatGPT(OpenAI)、DeepSeek(中国团队研发)和Grok(xAI,ElonMusk旗下公司)是当前三大具有代表性的AI语言模型。它们在技术架构、应用场景、用户体验、生态开放性等多个维度各具特色,并针对不同的用户需
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 基于发明的电容电感的新型热力梯度耦合电容电感lc谐振储能可行性
热爱电气
数学建模
热梯度双层LC谐振储能结构可行性分析设计一种结合热力梯度、电容层(C层)、电感层(L层)及中间耦合层的双层LC谐振储能系统,需从物理原理、材料选择、热管理、能量耦合效率等方面进行综合评估。以下是详细分析:1.设计原理与理论模型(1)结构示意图[高温区]┌───────────────┐│电容层(C层)│→温度梯度ΔT├───────────────┤│热-电耦合层│→热传导/电磁耦合├──────
- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 使用FastAPI部署bge-base和bge-reranker
MoyiTech
fastapipython开发语言RAGrerank
最近在做RAG项目,会频繁使用到本地embedding模型和rerank模型,但是每次跑demo都要用10来秒加载模型,非常慢,所以就封装了接口用于直接调用importosimportnumpyasnpimportloggingimportuvicornimportdatetimefromfastapiimportFastAPI,Security,HTTPExceptionfromfastapi.
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 零信任架构
阿湯哥
架构
零信任架构(ZeroTrustArchitecture,ZTA)零信任架构是一种新型网络安全模型,核心理念是“永不信任,始终验证”(NeverTrust,AlwaysVerify)。它摒弃传统基于边界的安全防护(如防火墙隔离内外部网络),转而通过动态的、细粒度的访问控制,对所有用户、设备和数据流进行持续验证,最小化攻击面并防范内部威胁。一、零信任与传统安全模型的对比维度传统安全模型零信任模型信任基
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。