from __future__ import print_function
import lightgbm as lgb
import sklearn
import numpy
import hyperopt
from hyperopt import hp, fmin, tpe, STATUS_OK, Trials
import colorama
import numpy as np
N_HYPEROPT_PROBES = 500
HYPEROPT_ALGO = tpe.suggest
colorama.init()
def get_lgb_params(space):
lgb_params = dict()
lgb_params['boosting_type'] = space['boosting_type'] if 'boosting_type' in space else 'gbdt'
lgb_params['objective'] = 'regression'
lgb_params['metric'] = 'rmse'
lgb_params['learning_rate'] = space['learning_rate']
lgb_params['num_leaves'] = int(space['num_leaves'])
lgb_params['min_data_in_leaf'] = int(space['min_data_in_leaf'])
lgb_params['min_sum_hessian_in_leaf'] = space['min_sum_hessian_in_leaf']
lgb_params['max_depth'] = -1
lgb_params['lambda_l1'] = space['lambda_l1'] if 'lambda_l1' in space else 0.0
lgb_params['lambda_l2'] = space['lambda_l2'] if 'lambda_l2' in space else 0.0
lgb_params['max_bin'] = int(space['max_bin']) if 'max_bin' in space else 256
lgb_params['feature_fraction'] = space['feature_fraction']
lgb_params['bagging_fraction'] = space['bagging_fraction']
lgb_params['bagging_freq'] = int(space['bagging_freq']) if 'bagging_freq' in space else 1
lgb_params['nthread'] = 4
return lgb_params
obj_call_count = 0
cur_best_score = 0
log_writer = open( '../lgb-hyperopt-log.txt', 'w' )
def objective(space):
global obj_call_count, cur_best_score
obj_call_count += 1
print('\nLightGBM objective call #{} cur_best_score={:7.5f}'.format(obj_call_count,cur_best_score) )
lgb_params = get_lgb_params(space)
sorted_params = sorted(space.items(), key=lambda z: z[0])
params_str = str.join(' ', ['{}={}'.format(k, v) for k, v in sorted_params])
print('Params: {}'.format(params_str) )
kf = KFold(n_splits=3, shuffle=True, random_state=0)
out_of_fold = np.zeros(len(X_train))
for fold, (train_idx, val_idx) in enumerate(kf.split(X_train)):
D_train = lgb.Dataset(X_train.iloc[train_idx], label=Y_train[train_idx])
D_val = lgb.Dataset(X_train.iloc[val_idx], label=Y_train[val_idx])
num_round = 10000
clf = lgb.train(lgb_params,
D_train,
num_boost_round=num_round,
valid_sets=D_val,
early_stopping_rounds=200,
verbose_eval=False,
)
nb_trees = clf.best_iteration
val_loss = clf.best_score['valid_0']
print('nb_trees={} val_loss={}'.format(nb_trees, val_loss))
out_of_fold[val_idx] = clf.predict(X_train.iloc[val_idx], num_iteration=nb_trees)
score = r2_score(out_of_fold, Y_train)
print('val_r2_score={}'.format(score))
log_writer.write('score={} Params:{} nb_trees={}\n'.format(score, params_str, nb_trees ))
log_writer.flush()
if score>cur_best_score:
cur_best_score = score
print(colorama.Fore.GREEN + 'NEW BEST SCORE={}'.format(cur_best_score) + colorama.Fore.RESET)
return {'loss': -score, 'status': STATUS_OK}
space ={
'num_leaves': hp.quniform ('num_leaves', 10, 100, 1),
'min_data_in_leaf': hp.quniform ('min_data_in_leaf', 10, 100, 1),
'feature_fraction': hp.uniform('feature_fraction', 0.75, 1.0),
'bagging_fraction': hp.uniform('bagging_fraction', 0.75, 1.0),
'learning_rate': hp.uniform('learning_rate', 0, 0.01),
'min_sum_hessian_in_leaf': hp.loguniform('min_sum_hessian_in_leaf', 0, 2.3),
'max_bin': hp.quniform ('max_bin', 88, 200, 1),
'bagging_freq': hp.quniform ('bagging_freq', 1, 15, 1),
'lambda_l1': hp.uniform('lambda_l1', 0, 10 ),
'lambda_l2': hp.uniform('lambda_l2', 0, 10 ),
}
trials = Trials()
best = hyperopt.fmin(fn=objective,
space=space,
algo=HYPEROPT_ALGO,
max_evals=N_HYPEROPT_PROBES,
trials=trials,
verbose=1)
print('-'*50)
print('The best params:')
print( best )
def get_lgb_params(space):
lgb_params = dict()
lgb_params['boosting_type'] = space['boosting_type'] if 'boosting_type' in space else 'gbdt'
lgb_params['objective'] = 'regression'
lgb_params['metric'] = 'rmse'
lgb_params['learning_rate'] = space['learning_rate']
lgb_params['num_leaves'] = int(space['num_leaves'])
lgb_params['min_data_in_leaf'] = int(space['min_data_in_leaf'])
lgb_params['min_sum_hessian_in_leaf'] = space['min_sum_hessian_in_leaf']
lgb_params['max_depth'] = -1
lgb_params['lambda_l1'] = space['lambda_l1'] if 'lambda_l1' in space else 0.0
lgb_params['lambda_l2'] = space['lambda_l2'] if 'lambda_l2' in space else 0.0
lgb_params['max_bin'] = int(space['max_bin']) if 'max_bin' in space else 256
lgb_params['feature_fraction'] = space['feature_fraction']
lgb_params['bagging_fraction'] = space['bagging_fraction']
lgb_params['bagging_freq'] = int(space['bagging_freq']) if 'bagging_freq' in space else 1
lgb_params['nthread'] = 4
return lgb_params
def objective(space):
global obj_call_count, cur_best_score
obj_call_count += 1
print('\nLightGBM objective call #{} cur_best_score={:7.5f}'.format(obj_call_count,cur_best_score) )
lgb_params = get_lgb_params(space)
sorted_params = sorted(space.items(), key=lambda z: z[0])
params_str = str.join(' ', ['{}={}'.format(k, v) for k, v in sorted_params])
print('Params: {}'.format(params_str) )
kf = KFold(n_splits=3, shuffle=True, random_state=0)
out_of_fold = np.zeros(len(X_train))
for fold, (train_idx, val_idx) in enumerate(kf.split(X_train)):
D_train = lgb.Dataset(X_train.iloc[train_idx], label=Y_train[train_idx])
D_val = lgb.Dataset(X_train.iloc[val_idx], label=Y_train[val_idx])
num_round = 10000
clf = lgb.train(lgb_params,
D_train,
num_boost_round=num_round,
valid_sets=D_val,
early_stopping_rounds=200,
verbose_eval=False,
)
nb_trees = clf.best_iteration
val_loss = clf.best_score['valid_0']
print('nb_trees={} val_loss={}'.format(nb_trees, val_loss))
out_of_fold[val_idx] = clf.predict(X_train.iloc[val_idx], num_iteration=nb_trees)
score = r2_score(out_of_fold, Y_train)
print('val_r2_score={}'.format(score))
log_writer.write('score={} Params:{} nb_trees={}\n'.format(score, params_str, nb_trees ))
log_writer.flush()
if score>cur_best_score:
cur_best_score = score
print(colorama.Fore.GREEN + 'NEW BEST SCORE={}'.format(cur_best_score) + colorama.Fore.RESET)
return {'loss': -score, 'status': STATUS_OK}
space ={
'num_leaves': hp.quniform ('num_leaves', 10, 100, 1),
'min_data_in_leaf': hp.quniform ('min_data_in_leaf', 10, 100, 1),
'feature_fraction': hp.uniform('feature_fraction', 0.75, 1.0),
'bagging_fraction': hp.uniform('bagging_fraction', 0.75, 1.0),
'learning_rate': hp.uniform('learning_rate', 0, 0.01),
'min_sum_hessian_in_leaf': hp.loguniform('min_sum_hessian_in_leaf', 0, 2.3),
'max_bin': hp.quniform ('max_bin', 88, 200, 1),
'bagging_freq': hp.quniform ('bagging_freq', 1, 15, 1),
'lambda_l1': hp.uniform('lambda_l1', 0, 10 ),
'lambda_l2': hp.uniform('lambda_l2', 0, 10 ),
}
trials = Trials()
best = hyperopt.fmin(fn=objective,
space=space,
algo=HYPEROPT_ALGO,
max_evals=N_HYPEROPT_PROBES,
trials=trials,
verbose=1)