3*3神经网络

import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
# neural network class definition
class neuralNetwork:
    # initialise the neural network
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        self.inodes = inputnodes    #输入层节点数
        self.hnodes = hiddennodes   #隐藏层(中间层)节点数
        self.onodes = outputnodes   #输出层节点数
        #随机生成输入层 、隐藏层、输出层两两之间的权重矩阵
        self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
        self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
        # learning rate 学习率
        self.lr = learningrate
        # activation function is the sigmoid function激活函数
        self.activation_function = lambda x: scipy.special.expit(x)
        pass

    
    # train the neural network 训练神经网络
    def train(self, inputs_list, targets_list):
        # convert inputs list to 2d array 将输入的列表
        inputs = numpy.array(inputs_list, ndmin=2).T
        targets = numpy.array(targets_list, ndmin=2).T
        
        # calculate signals into hidden layer 隐藏层输入输出
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer 输出层输出输入
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        
        # output layer error is the (target - actual)
        output_errors = targets - final_outputs   #误差
        # hidden layer error is the output_errors, split by weights, recombined at hidden nodes 反向传播计算隐藏层输出误差
        hidden_errors = numpy.dot(self.who.T, output_errors) 
        
        # update the weights for the links between the hidden and output layers 反向传播调整隐藏层和输出层参数
        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
        
        # update the weights for the links between the input and hidden layers 反向传播调整输入层和隐藏层权值参数
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
        
        pass

    
    # query the neural network 计算输出 将输入的列表与权值矩阵做运算
    def query(self, inputs_list):  
        # convert inputs list to 2d array
        inputs = numpy.array(inputs_list, ndmin=2).T
        
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        
        return final_outputs
    # number of input, hidden and output nodes
    def getParameter(self):
        print("input_nodes={},hidden_nodes={},output_nodes={}".format(self.inodes,self.hnodes,self.onodes))
        print("权值矩阵1:",self.wih,'\n权值矩阵2:',self.who)
        print("学习率:{},激活函数:{}".format(self.lr,self.activation_function))
        print()
        pass
        
if __name__ == "__main__":
    input_nodes = 3
    hidden_nodes = 3
    output_nodes = 3
    # learning rate is 0.3
    learning_rate = 0.3

    # create instance of neural network
    three_layer_neural_network = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
    three_layer_neural_network.getParameter()

    print("训练后:")
    three_layer_neural_network.train([1,2,3],[1,4,9])
    three_layer_neural_network.getParameter()

    three_layer_neural_network_2=neuralNetwork(4,3,5,0.6)
    three_layer_neural_network_2.getParameter()

 

你可能感兴趣的:(神经网络与深度学习,python)