通过学习自定义平衡二叉树,了解平衡二叉树这一数据结构。
AVL树是以二分搜索树为基础的改进。参考:二分搜索树
之前的线段树、堆(基于完全二叉树)都是平衡二叉树。
平衡二叉树,又称AVL树,它是一种特殊的二分搜索树(或叫二叉排序树)。AVL树或者是一棵空树,或者是具有以下性质的二叉树:
(1)左子树和右子树都是平衡二叉树;
(2)左子树和右子树的深度(高度)之差的绝对值不超过1。
LL:
RR:
LR:
RL:
代码是对二分搜索树代码的改进:
package AVL;
import java.util.ArrayList;
public class AVLTree ,V>{
private class Node{
public K key;
public V value;
public Node left,right;
public int height;//记录节点的高度
public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;//初始高度为1
}
}
private Node root;
private int size;
/**
* 构造方法
*/
public AVLTree(){
root = null;
size = 0;
}
/**
* 获取AVL树的大小
* @return
*/
public int getSize(){
return size;
}
/**
* 判断AVL树是否为空
* @return
*/
public boolean isEmpty(){
return size == 0;
}
/**
* 获得节点node的高度
* @param node
* @return
*/
private int getHeight(Node node){
if(node == null) {
return 0;
}
return node.height;
}
/**
* 获得节点node的平衡因子
* 用左子树的高度减去右子树的高度
* @param node
* @return
*/
private int getBalanceFactor(Node node){
if(node == null) {
return 0;
}
return getHeight(node.left) - getHeight(node.right);
}
/**
* LL
* @param y
* @return
*/
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
// 向右旋转过程
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
/**
* RR
* @param y
* @return
*/
// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
// 向左旋转过程
x.left = y;
y.right = T2;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
/**
* 向二分搜索树中添加新的元素(key, value)
* @param key
* @param value
*/
public void add(K key, V value){
root = add(root, key, value);
}
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
// RR
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
// LR
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
// 返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node, K key){
if(node == null)
return null;
if(key.equals(node.key))
return node;
else if(key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}
public boolean contains(K key){
return getNode(root, key) != null;
}
public V get(K key){
Node node = getNode(root, key);
return node == null ? null : node.value;
}
public void set(K key, V newValue){
Node node = getNode(root, key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}
// 从二分搜索树中删除键为key的节点
public V remove(K key){
Node node = getNode(root, key);
if(node != null){
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key){
if( node == null )
return null;
Node retNode;
if( key.compareTo(node.key) < 0 ){
node.left = remove(node.left , key);
// return node;
retNode = node;
}
else if(key.compareTo(node.key) > 0 ){
node.right = remove(node.right, key);
// return node;
retNode = node;
}
else{ // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
// return rightNode;
retNode = rightNode;
}
// 待删除节点右子树为空的情况
else if(node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
// return leftNode;
retNode = leftNode;
}
// 待删除节点左右子树均不为空的情况
else{
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
//successor.right = removeMin(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
// return successor;
retNode = successor;
}
}
if(retNode == null)
return null;
// 更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(retNode);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
return rightRotate(retNode);
// RR
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
return leftRotate(retNode);
// LR
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
// 判断该二叉树是否是一棵二分搜索树
public boolean isBST(){
ArrayList keys = new ArrayList<>();
inOrder(root, keys);
for(int i = 1 ; i < keys.size() ; i ++)
if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
return false;
return true;
}
private void inOrder(Node node, ArrayList keys){
if(node == null)
return;
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
// 判断该二叉树是否是一棵平衡二叉树
public boolean isBalanced(){
return isBalanced(root);
}
// 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
private boolean isBalanced(Node node){
if(node == null)
return true;
int balanceFactor = getBalanceFactor(node);
if(Math.abs(balanceFactor) > 1)
return false;
return isBalanced(node.left) && isBalanced(node.right);
}
}