tensorflow中 tf.reduce_mean函数

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。

reduce_mean(input_tensor,
                axis=None,
                keep_dims=False,
                name=None,
                reduction_indices=None)

第一个参数input_tensor: 输入的待降维的tensor;
第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
第三个参数keep_dims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
第四个参数name: 操作的名称;
第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;
以一个维度是2,形状是[3,3]的tensor举例:

import tensorflow as tf
 
x = [[1,2,3],
      [1,2,3]]
 
xx = tf.cast(x,tf.float32)
 
mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)
 
 
with tf.Session() as sess:
    m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1])
 
print m_a    # output: 2.0
print m_0    # output: [ 1.  2.  3.]
print m_1    #output:  [ 2.  2.]
如果设置保持原来的张量的维度,keep_dims=True ,结果:

print m_a    # output: [[ 2.]]
print m_0    # output: [[ 1.  2.  3.]]
print m_1    #output:  [[ 2.], [ 2.]]
 
 
 
 


类似函数还有:

tf.reduce_sum :计算tensor指定轴方向上的所有元素的累加和;
tf.reduce_max  :  计算tensor指定轴方向上的各个元素的最大值;
tf.reduce_all :  计算tensor指定轴方向上的各个元素的逻辑和(and运算);
tf.reduce_any:  计算tensor指定轴方向上的各个元素的逻辑或(or运算);
--------------------- 
作者:-牧野- 
来源:CSDN 
原文:https://blog.csdn.net/dcrmg/article/details/79797826 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(python)