数据结构之最短路径

对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点是源点,最后一个顶点是终点。

迪杰斯特拉(Dijkstra)算法

这是一个按路径长度递增的次序产生最短路径的算法。它的思路大体是这样的:并不是一下子就求出v0到v8的最短路径,而是一步步求出它们之间顶点的最短路径,过程中都是基于已经求出的最短路径的基础上,求得更远顶点的最短路径,最终得到你要的结果。
数据结构之最短路径_第1张图片

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535
typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef struct
{
	int vexs[MAXVEX];
	int arc[MAXVEX][MAXVEX];
	int numVertexes, numEdges;
}MGraph;
typedef int Patharc[MAXVEX];    /* 用于存储最短路径下标的数组 */
typedef int ShortPathTable[MAXVEX];/* 用于存储到各点最短路径的权值和 */

								   /* 构件图 */
void CreateMGraph(MGraph *G)
{
	int i, j;
	/* printf("请输入边数和顶点数:"); */
	G->numEdges = 16;
	G->numVertexes = 9;
	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		G->vexs[i] = i;
	}
	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		for (j = 0; j < G->numVertexes; j++)
		{
			if (i == j)
				G->arc[i][j] = 0;
			else
				G->arc[i][j] = G->arc[j][i] = INFINITY;
		}
	}
	G->arc[0][1] = 1;
	G->arc[0][2] = 5;
	G->arc[1][2] = 3;
	G->arc[1][3] = 7;
	G->arc[1][4] = 5;
	G->arc[2][4] = 1;
	G->arc[2][5] = 7;
	G->arc[3][4] = 2;
	G->arc[3][6] = 3;
	G->arc[4][5] = 3;
	G->arc[4][6] = 6;
	G->arc[4][7] = 9;
	G->arc[5][7] = 5;
	G->arc[6][7] = 2;
	G->arc[6][8] = 7;
	G->arc[7][8] = 4;
	for (i = 0; i < G->numVertexes; i++)
	{
		for (j = i; j < G->numVertexes; j++)
		{
			G->arc[j][i] = G->arc[i][j];
		}
	}

}
/*  Dijkstra算法,求有向网G的v0顶点到其余顶点v的最短路径P[v]及带权长度D[v] */
/*  P[v]的值为前驱顶点下标,D[v]表示v0到v的最短路径长度和 */
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc *P, ShortPathTable *D)
{
	int v, w, k, min;
	int final[MAXVEX];/* final[w]=1表示求得顶点v0至vw的最短路径 */
	for (v = 0; v<G.numVertexes; v++)    /* 初始化数据 */
	{
		final[v] = 0;			/* 全部顶点初始化为未知最短路径状态 */
		(*D)[v] = G.arc[v0][v];/* 将与v0点有连线的顶点加上权值 */
		(*P)[v] = -1;				/* 初始化路径数组P为-1  */
	}
	(*D)[v0] = 0;  /* v0至v0路径为0 */
	final[v0] = 1;    /* v0至v0不需要求路径 */
					  /* 开始主循环,每次求得v0到某个v顶点的最短路径 */
	for (v = 1; v<G.numVertexes; v++)
	{
		min = INFINITY;    /* 当前所知离v0顶点的最近距离 */
		for (w = 0; w<G.numVertexes; w++) /* 寻找离v0最近的顶点 */
		{
			if (!final[w] && (*D)[w]<min)
			{
				k = w;
				min = (*D)[w];    /* w顶点离v0顶点更近 */
			}
		}
		final[k] = 1;    /* 将目前找到的最近的顶点置为1 */
		for (w = 0; w<G.numVertexes; w++) /* 修正当前最短路径及距离 */
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if (!final[w] && (min + G.arc[k][w]<(*D)[w]))
			{ /*  说明找到了更短的路径,修改D[w]和P[w] */
				(*D)[w] = min + G.arc[k][w];  /* 修改当前路径长度 */
				(*P)[w] = k;
			}
		}
	}
}
int main(void)
{
	int i, j, v0;
	MGraph G;
	Patharc P;
	ShortPathTable D; /* 求某点到其余各点的最短路径 */
	v0 = 0;
	CreateMGraph(&G);
	ShortestPath_Dijkstra(G, v0, &P, &D);
	printf("最短路径倒序如下:\n");
	for (i = 1; i<G.numVertexes; ++i)
	{
		printf("v%d - v%d : ", v0, i);
		j = i;
		while (P[j] != -1)
		{
			printf("%d ", P[j]);
			j = P[j];
		}
		printf("\n");
	}
	printf("\n源点到各顶点的最短路径长度为:\n");
	for (i = 1; i<G.numVertexes; ++i)
		printf("v%d - v%d : %d \n", G.vexs[0], G.vexs[i], D[i]);
	system("pause");
	return 0;
}

运行结果为:

最短路径倒序如下:
v0 - v1 :
v0 - v2 : 1
v0 - v3 : 4 2 1
v0 - v4 : 2 1
v0 - v5 : 4 2 1
v0 - v6 : 3 4 2 1
v0 - v7 : 6 3 4 2 1
v0 - v8 : 7 6 3 4 2 1
源点到各顶点的最短路径长度为:
v0 - v1 : 1
v0 - v2 : 4
v0 - v3 : 7
v0 - v4 : 5
v0 - v5 : 8
v0 - v6 : 10
v0 - v7 : 12
v0 - v8 : 16

弗洛伊德(Floyd)算法

先定义两个二维数组 D [ 3 ] [ 3 ] D[3][3] D[3][3] P [ 3 ] [ 3 ] P[3][3] P[3][3] D D D代表顶点到顶点的最短路径权值和的矩阵,初始化为 D − 1 D^{-1} D1,其实就是初始的图的邻接矩阵。将 P P P命名为 P − 1 P^{-1} P1,初始化为图中矩阵。
数据结构之最短路径_第2张图片

首先分析所有的顶点经过v0后到达另一个顶点的最短路径。因为只有三个顶点,因此需要查看v1->v0->v2,得到路径为3。而v1->v2权值为5,所以就有了 D 0 D^0 D0矩阵,同时修改 P 0 P^0 P0矩阵。接下来,再在 D 0 和 P 0 D^0和P^0 D0P0的基础上计算经过v1和v2的后到达另一个顶点的最短路径,得到 D 1 、 P 1 和 D 2 、 P 2 D^1、P^1和D^2、P^2 D1P1D2P2
数据结构之最短路径_第3张图片

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */

typedef struct
{
	int vexs[MAXVEX];
	int arc[MAXVEX][MAXVEX];
	int numVertexes, numEdges;
}MGraph;

typedef int Patharc[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];

/* 构件图 */
void CreateMGraph(MGraph *G)
{
	int i, j;

	/* printf("请输入边数和顶点数:"); */
	G->numEdges = 16;
	G->numVertexes = 9;

	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		G->vexs[i] = i;
	}

	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		for (j = 0; j < G->numVertexes; j++)
		{
			if (i == j)
				G->arc[i][j] = 0;
			else
				G->arc[i][j] = G->arc[j][i] = INFINITY;
		}
	}

	G->arc[0][1] = 1;
	G->arc[0][2] = 5;
	G->arc[1][2] = 3;
	G->arc[1][3] = 7;
	G->arc[1][4] = 5;

	G->arc[2][4] = 1;
	G->arc[2][5] = 7;
	G->arc[3][4] = 2;
	G->arc[3][6] = 3;
	G->arc[4][5] = 3;

	G->arc[4][6] = 6;
	G->arc[4][7] = 9;
	G->arc[5][7] = 5;
	G->arc[6][7] = 2;
	G->arc[6][8] = 7;

	G->arc[7][8] = 4;


	for (i = 0; i < G->numVertexes; i++)
	{
		for (j = i; j < G->numVertexes; j++)
		{
			G->arc[j][i] = G->arc[i][j];
		}
	}

}

/* Floyd算法,求网图G中各顶点v到其余顶点w的最短路径P[v][w]及带权长度D[v][w]。 */
void ShortestPath_Floyd(MGraph G, Patharc *P, ShortPathTable *D)
{
	int v, w, k;
	for (v = 0; v<G.numVertexes; ++v) /* 初始化D与P */
	{
		for (w = 0; w<G.numVertexes; ++w)
		{
			(*D)[v][w] = G.arc[v][w];	/* D[v][w]值即为对应点间的权值 */
			(*P)[v][w] = w;				/* 初始化P */
		}
	}
	for (k = 0; k<G.numVertexes; ++k)
	{
		for (v = 0; v<G.numVertexes; ++v)
		{
			for (w = 0; w<G.numVertexes; ++w)
			{
				if ((*D)[v][w]>(*D)[v][k] + (*D)[k][w])
				{/* 如果经过下标为k顶点路径比原两点间路径更短 */
					(*D)[v][w] = (*D)[v][k] + (*D)[k][w];/* 将当前两点间权值设为更小的一个 */
					(*P)[v][w] = (*P)[v][k];/* 路径设置为经过下标为k的顶点 */
				}
			}
		}
	}
}

int main(void)
{
	int v, w, k;
	MGraph G;

	Patharc P;
	ShortPathTable D; /* 求某点到其余各点的最短路径 */

	CreateMGraph(&G);

	ShortestPath_Floyd(G, &P, &D);

	printf("各顶点间最短路径如下:\n");
	for (v = 0; v<G.numVertexes; ++v)
	{
		for (w = v + 1; w<G.numVertexes; w++)
		{
			printf("v%d-v%d weight: %d ", v, w, D[v][w]);
			k = P[v][w];				/* 获得第一个路径顶点下标 */
			printf(" path: %d", v);	/* 打印源点 */
			while (k != w)				/* 如果路径顶点下标不是终点 */
			{
				printf(" -> %d", k);	/* 打印路径顶点 */
				k = P[k][w];			/* 获得下一个路径顶点下标 */
			}
			printf(" -> %d\n", w);	/* 打印终点 */
		}
		printf("\n");
	}

	printf("最短路径D\n");
	for (v = 0; v<G.numVertexes; ++v)
	{
		for (w = 0; w<G.numVertexes; ++w)
		{
			printf("%d\t", D[v][w]);
		}
		printf("\n");
	}
	printf("最短路径P\n");
	for (v = 0; v<G.numVertexes; ++v)
	{
		for (w = 0; w<G.numVertexes; ++w)
		{
			printf("%d ", P[v][w]);
		}
		printf("\n");
	}
	system("pause");
	return 0;
}

运行结果:

各顶点间最短路径如下:
v0-v1 weight: 1  path: 0 -> 1
v0-v2 weight: 4  path: 0 -> 1 -> 2
v0-v3 weight: 7  path: 0 -> 1 -> 2 -> 4 -> 3
v0-v4 weight: 5  path: 0 -> 1 -> 2 -> 4
v0-v5 weight: 8  path: 0 -> 1 -> 2 -> 4 -> 5
v0-v6 weight: 10  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6
v0-v7 weight: 12  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7
v0-v8 weight: 16  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v1-v2 weight: 3  path: 1 -> 2
v1-v3 weight: 6  path: 1 -> 2 -> 4 -> 3
v1-v4 weight: 4  path: 1 -> 2 -> 4
v1-v5 weight: 7  path: 1 -> 2 -> 4 -> 5
v1-v6 weight: 9  path: 1 -> 2 -> 4 -> 3 -> 6
v1-v7 weight: 11  path: 1 -> 2 -> 4 -> 3 -> 6 -> 7
v1-v8 weight: 15  path: 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v2-v3 weight: 3  path: 2 -> 4 -> 3
v2-v4 weight: 1  path: 2 -> 4
v2-v5 weight: 4  path: 2 -> 4 -> 5
v2-v6 weight: 6  path: 2 -> 4 -> 3 -> 6
v2-v7 weight: 8  path: 2 -> 4 -> 3 -> 6 -> 7
v2-v8 weight: 12  path: 2 -> 4 -> 3 -> 6 -> 7 -> 8

v3-v4 weight: 2  path: 3 -> 4
v3-v5 weight: 5  path: 3 -> 4 -> 5
v3-v6 weight: 3  path: 3 -> 6
v3-v7 weight: 5  path: 3 -> 6 -> 7
v3-v8 weight: 9  path: 3 -> 6 -> 7 -> 8

v4-v5 weight: 3  path: 4 -> 5
v4-v6 weight: 5  path: 4 -> 3 -> 6
v4-v7 weight: 7  path: 4 -> 3 -> 6 -> 7
v4-v8 weight: 11  path: 4 -> 3 -> 6 -> 7 -> 8

v5-v6 weight: 7  path: 5 -> 7 -> 6
v5-v7 weight: 5  path: 5 -> 7
v5-v8 weight: 9  path: 5 -> 7 -> 8

v6-v7 weight: 2  path: 6 -> 7
v6-v8 weight: 6  path: 6 -> 7 -> 8

v7-v8 weight: 4  path: 7 -> 8


最短路径D
0       1       4       7       5       8       10      12      16
1       0       3       6       4       7       9       11      15
4       3       0       3       1       4       6       8       12
7       6       3       0       2       5       3       5       9
5       4       1       2       0       3       5       7       11
8       7       4       5       3       0       7       5       9
10      9       6       3       5       7       0       2       6
12      11      8       5       7       5       2       0       4
16      15      12      9       11      9       6       4       0
最短路径P
0 1 1 1 1 1 1 1 1
0 1 2 2 2 2 2 2 2
1 1 2 4 4 4 4 4 4
4 4 4 3 4 4 6 6 6
2 2 2 3 4 5 3 3 3
4 4 4 4 4 5 7 7 7
3 3 3 3 3 7 6 7 7
6 6 6 6 6 5 6 7 8
7 7 7 7 7 7 7 7 8

你可能感兴趣的:(数据结构)