笔记摘要:
这里介绍了java5中的线程锁技术:Lock和Condition,实现线程间的通信,其中的读锁和写锁的使用通过一个缓存系统进行了演示,对于Condition的应用通过
一个阻塞队列进行演示。
线程锁技术:Lock & Condition 实现线程同步通信
所属包:java.util.concurrent.locks
一、Lock
1、Lock比传统线程模型中的synchronized方式更加面向对象,相对于synchronized 方法和语句它具有更广泛的锁定操作,此实现允许更灵活的结构,
可以具有差别很大的属性,可以支持多个相关的 Condition 对象。
2、于现实生活中类似,锁本身也是一个对象。两个线程执行的代码片段要实现同步互斥的结果,它们必须用同一个Lock对象,锁是上在代表要操作的
资源的类的内部方法中,而不是线程代码中。
3、读写锁:
分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,写锁与写锁互斥,这是由JVM自己控制的。
4、读写锁的使用情景:
如果代码只读数据,就可以很多人共同读取,但不能同时写。
如果代码修改数据,只能有一个人在写,且不能同时读数据。
API中ReentrantReadWriteLock类提供的一个读写锁缓存示例:
class CachedData {
Object data;
volatile boolean cacheValid;
ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// Must release read lock before acquiring write lock
rwl.readLock().unlock();
rwl.writeLock().lock();
// Recheck state because another thread might have acquired
// write lock and changed state before we did.
if (!cacheValid) {
data = ...
cacheValid = true;
}
// Downgrade by acquiring read lock before releasing write lock
rwl.readLock().lock();
rwl.writeLock().unlock(); // Unlock write, still hold read
}
use(data);
rwl.readLock().unlock();
}
}
读写锁的应用:编写一个缓存系统
注解:
为了避免线程的安全问题,synchronized和ReadWriteLock都可以,synchronized也防止了并发读取,性能较低
有一个线程先进去,开始读取数据,进行判断,发现没有数据,其他线程就没有必要进去了,就释放读锁,加上写锁,
去查找数据写入,为了避免写入的其他对象等待,再做一次判断,数据写入完成后,释放写锁,上读锁,防止写入,
还原原来的状态。
两次判断:第一次为了写入数据,所以释放读锁,上写锁。第二次为了防止阻塞的线程重复写入
*/
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class CacheDemo {
//定义一个map用于缓存对象
private Map cache = new HashMap();
//获取一个读写锁对象
private ReadWriteLock rwl = new ReentrantReadWriteLock();
//带有缓存的获取指定值的方法
public Object getData(String key){
rwl.readLock().lock(); //上读锁
Object value = null;
try{
value = cache.get(key); //获取要查询的值
if(value == null){ //线程出现安全问题的地方
rwl.readLock().unlock(); //没有数据,释放读锁,上写锁
rwl.writeLock().lock(); //多个线程去上写锁,第一个上成功后,其他线程阻塞,第一个线程开始执行下面的代码,最后
//释放写锁后,后面的线程继续上写锁,为了避免后面的线程重复写入,进行二次判断
try{
if(value==null){ //二次判断,防止其他线程重复写数据
value = "aaaa"; //实际是去查询数据库
}
}finally{
rwl.writeLock().unlock(); //写完数据,释放写锁
}
rwl.readLock().lock(); //恢复读锁
}
}finally{
rwl.readLock().unlock(); //最终释放读锁
}
return value; //返回获取到的值
}
}
二、Condition
1、Condition 将 Object 监视器方法(wait、notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象
提供多个等待 set(wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法wait和notify的使用。
2、一个锁内部可以有多个Condition,即有多路等待通知,传统的线程机制中一个监视器对象上只能有一路等待和通知,要想实现多路等待和通知,必须
嵌套使用多个同步监视器对象。使用一个监视器往往会产生顾此失彼的情况。
3、在等待 Condition 时,允许发生“虚假唤醒”,这通常作为对基础平台语义的让步。对于大多数应用程序,这带来的实际影响很小,因为 Condition 应该
总是在一个循环中被等待,并测试正被等待的状态声明。某个实现可以随意移除可能的虚假唤醒,但建议应用程序程序员总是假定这些虚假唤醒可能发生,
因此总是在一个循环中等待。
Condition的应用:阻塞队列(使用了两个监视器)
说明:
该应用是 java.util.concurrent.locks包中Condition接口中的示例代码。
使用了两个Condition分别用于管理取数据的线程,和存数据的线程,这样就可以明确的唤醒需要的一类线程,如果使用一个Condition,当队列满了之后,
唤醒的并不一定就是取数据的线程
class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();
final Object[] items = new Object[100];
int putptr, takeptr, count;
public void put(Object x) throws InterruptedException {
lock.lock();
try {
while (count == items.length) //循环判断队列是否已存满
notFull.await(); //如果队列存满了,则要存入数据的线程等待
items[putptr] = x;
if (++putptr == items.length) putptr = 0;//当队列放满,指针回到0
++count; //添加了一个数据
notEmpty.signal(); //队列中有数据了,所以就唤醒取数据的线程
} finally {
lock.unlock();
}
}
public Object take() throws InterruptedException {
lock.lock();
try {
while (count == 0) //循环判断,队列是否有空位
notEmpty.await(); //要取的线程等待
Object x = items[takeptr];
if (++takeptr == items.length) takeptr = 0;
--count; //取走一个,说明队列有空闲的位置,
notFull.signal(); //所以通知存入的线程
return x;
} finally {
lock.unlock();
}
}
}
Condition练习:
一共有3个线程,两个子线程先后循环10次,接着主线程循环100次,接着又回到两 个子线程先后循环10次,再回到主线程又循环100,如此循环50次。
思路:
老二先执行,执行完唤醒老三,老三执行完唤醒老大,老大执行完唤醒老二,以此循环,
所以定义3个Condition对象和一个执行标识即可
示例出现的问题:两个文件中有同名类的情况
解决方案:
可以将一个文件中的那个同名外部类放进类中,但是静态不能创建内部类的实例对象,所以需要加上static,这样两个类的名称就不一样了。
一个是原来的类名,一个是在自己类名前面加上外部类的类名。
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ThreeConditionCommunication {
public static void main(String[] args){
final Business business = new Business();
//创建并启动子线程老二
new Thread(new Runnable(){
@Override
public void run() {
for(int i=1;i<=50;i++){
business.sub2(i);
}
}
}).start();
//创建并启动子线程老三
new Thread(new Runnable(){
@Override
public void run() {
for(int i=1;i<=50;i++){
business.sub3(i);
}
}
}).start();
//主线程
for(int i=1;i<=50;i++){
business.main(i);
}
}
static class Business{
Lock lock = new ReentrantLock();
Condition condition1 = lock.newCondition();
Condition condition2 = lock.newCondition();
Condition condition3 = lock.newCondition();
//定义一个变量来决定线程的执行权
private int ShouldSub = 1;
public void sub2(int i){
//上锁,不让其他线程执行
lock.lock();
try{
if(ShouldSub != 2){ //如果不该老二执行,就等待
try {
condition2.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
for(int j=1;j<=10;j++){
System.out.println("sub thread sequence of"+i+",loop of "+j);
}
ShouldSub = 3; //准备让老三执行
condition3.signal(); //唤醒老三
}finally{
lock.unlock();
}
}
public void sub3(int i){
lock.lock();
try{
if(ShouldSub != 3){
try {
condition3.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
for(int j=1;j<=10;j++){
System.out.println("sub2 thread sequence of"+i+",loop of "+j);
}
ShouldSub = 1; //准备让老大执行
condition1.signal(); //唤醒老大
}finally{
lock.unlock();
}
}
//主线程
public void main(int i){
lock.lock();
try{
if(ShouldSub!=1){
try {
condition1.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
for(int j=1;j<=100;j++){
System.out.println("main thread sequence of"+i+", loop of "+j);
}
ShouldSub = 2; //准备让老二执行
condition2.signal(); //唤醒老二
}finally{
lock.unlock();
}
}
}
}