Powered by:AB_IN 局外人
贪心算法,最小的数当父节点,其他数均为子节点。
n = int(input())
a = list(map(int,input().split()))
a.sort()
print(sum(a)+a[0]*(n-2))
依然是贪心,把获得半价的权力给价格高的即可。
#include
#pragma GCC optimize(2)
#pragma GCC optimize(3)
typedef unsigned long long ull;
typedef long long ll;
ll a[1001],t,n,m,b;
using namespace std;
namespace IO{
char ibuf[1<<21],*ip=ibuf,*ip_=ibuf;
char obuf[1<<21],*op=obuf,*op_=obuf+(1<<21);
inline char gc(){
if(ip!=ip_)return *ip++;
ip=ibuf;ip_=ip+fread(ibuf,1,1<<21,stdin);
return ip==ip_?EOF:*ip++;
}
inline void pc(char c){
if(op==op_)fwrite(obuf,1,1<<21,stdout),op=obuf;
*op++=c;
}
inline ll read(){
register ll x=0,ch=gc(),w=1;
for(;ch<'0'||ch>'9';ch=gc())if(ch=='-')w=-1;
for(;ch>='0'&&ch<='9';ch=gc())x=x*10+ch-48;
return w*x;
}
template<class I>
inline void write(I x){
if(x<0)pc('-'),x=-x;
if(x>9)write(x/10);pc(x%10+'0');
}
class flusher_{
public:
~flusher_(){if(op!=obuf)fwrite(obuf,1,op-obuf,stdout);}
}IO_flusher;
}
using namespace IO;
int main()
{
t=read();
while(t--){
n=read();m=read();
double sum=0;
ll cnt=0;
for(int i=1;i<=n;i++){
a[i]=read();
b=read();
sum+=a[i];
cnt+=b;
}
sort(a+1,a+1+n);
ll j=min(cnt,m);
for(int i=n;i>=n-j+1;i--)
sum-=1.0*a[i]/2;
printf("%.1lf\n",sum);
}
}
洛谷原题,以前写过,就直接把代码搬过来了。
思路就是:从头开始记下每个地毯的四个坐标,然后从尾开始判定点是不是在地毯里。
#include
using namespace std;
const int N=1e5+1;
int a[N][5],n,x,y,flag;
int main()
{
while(cin>>n){
flag=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
a[i][j]==0;
}
}
for(int i=1;i<=n;i++){
cin>>a[i][1]>>a[i][2]>>a[i][3]>>a[i][4];
a[i][3]=a[i][3]+a[i][1];//向右
a[i][4]=a[i][4]+a[i][2];//向上
}
cin>>x>>y;
for(int i=n;i>=1;i--){
if(x>=a[i][1]&&x<=a[i][3]&&y>=a[i][2]&&y<=a[i][4]){
cout<<i<<endl;
flag=1;
break;
}
}
if(flag==0)
cout<<"-1";
}
return 0;
}
dp基础题。
一个点只能由它的,左上,正左,左下走来。(前一列的三个点)
所以要一列一列判断。
则状态转移方程:
d p [ i ] [ j ] = m a x ( m a x ( d p [ i − 1 ] [ j − 1 ] , d p [ i ] [ j − 1 ] ) , d p [ i + 1 ] [ j − 1 ] ) dp[i][j]=max(max(dp[i-1][j-1],dp[i][j-1]),dp[i+1][j-1]) dp[i][j]=max(max(dp[i−1][j−1],dp[i][j−1]),dp[i+1][j−1])
然而有些点可能无法到达,因为dp值为0,而金币数>0,所以判断一下:
i f ( d p [ i ] [ j ] ) d p [ i ] [ j ] + = a [ i ] [ j ] ; if(dp[i][j]) \ dp[i][j]+=a[i][j]; if(dp[i][j]) dp[i][j]+=a[i][j];
#include
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
typedef long long ll;
ll a[120][120],n,m,dp[120][120];
using namespace std;
namespace IO{
char ibuf[1<<21],*ip=ibuf,*ip_=ibuf;
char obuf[1<<21],*op=obuf,*op_=obuf+(1<<21);
inline char gc(){
if(ip!=ip_)return *ip++;
ip=ibuf;ip_=ip+fread(ibuf,1,1<<21,stdin);
return ip==ip_?EOF:*ip++;
}
inline void pc(char c){
if(op==op_)fwrite(obuf,1,1<<21,stdout),op=obuf;
*op++=c;
}
inline ll read(){
register ll x=0,ch=gc(),w=1;
for(;ch<'0'||ch>'9';ch=gc())if(ch=='-')w=-1;
for(;ch>='0'&&ch<='9';ch=gc())x=x*10+ch-48;
return w*x;
}
template<class I>
inline void write(I x){
if(x<0)pc('-'),x=-x;
if(x>9)write(x/10);pc(x%10+'0');
}
class flusher_{
public:
~flusher_(){if(op!=obuf)fwrite(obuf,1,op-obuf,stdout);}
}IO_flusher;
}
using namespace IO;
int main()
{
n=read();m=read();
rep(i,1,n){
rep(j,1,m){
a[i][j]=read();
}
}
dp[1][1]=a[1][1];
rep(j,2,m){
rep(i,1,n){
dp[i][j]=max(max(dp[i-1][j-1],dp[i][j-1]),dp[i+1][j-1]);
if(dp[i][j]) dp[i][j]+=a[i][j];
}
}
write(dp[n][m]);
return 0;
}
完结。