- LiteCoT:难度感知的推理链压缩与高效蒸馏框架
大千AI助手
人工智能#Prompt#OTHER深度学习人工智能机器学习自然语言处理提示词LiteCoT思维链
“以智能裁剪对抗冗余,让推理效率与精度兼得”LiteCoT是由香港科技大学(广州)联合独立研究者团队提出的创新方法,旨在解决大模型知识蒸馏中推理链过度冗长和缺乏难度适应性的核心问题。该方法通过难度感知提示(DAP)动态生成精简的推理链,显著提升小模型推理效率与准确性。相关论文发表于arXiv预印本平台(2025年),为当前大模型轻量化部署的前沿方案。本文由「大千AI助手」原创发布,专注用真话讲AI
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- 知识蒸馏:模型压缩与知识迁移的核心引擎
大千AI助手
人工智能Python#OTHERtransformer人工智能神经网络深度学习知识蒸馏KD蒸馏
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从软目标迁移到无数据合成的轻量化革命一、核心定义与技术价值知识蒸馏(KnowledgeDistillation,KD)是一种通过迁移大型教师模型(Teacher)的知识至小型学生模型(Student)的模型压缩技术。其核心思想是:学生模型不仅学习原始数
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 嵌入式AI模型压缩技术:让大模型变小
AI智能探索者
AIAgent智能体开发实战人工智能ai
嵌入式AI模型压缩技术:让大模型变小关键词:嵌入式AI、模型压缩、剪枝、量化、知识蒸馏、轻量化网络、端侧部署摘要:当我们用手机拍照时,AI能瞬间识别出“这是一只猫”;智能摄像头能在0.1秒内检测到“有人闯入”。这些“快如闪电”的AI功能背后,藏着一项关键技术——嵌入式AI模型压缩。本文将用“给盆栽修剪枝叶”“用简笔画代替油画”等生活类比,带您一步步理解模型压缩的核心技术(剪枝、量化、知识蒸馏、轻量
- 大模型·知识蒸馏·学习笔记
小先生00101
笔记人工智能神经网络机器学习自然语言处理深度学习语言模型
第一部分:核心概念入门1.1什么是知识蒸馏?核心问题:深度学习模型(如大型神经网络)虽然性能强大,但其巨大的参数量和计算需求使其难以部署到手机、嵌入式设备等资源受限的平台。核心思想:知识蒸馏是一种模型压缩和优化的技术,其灵感来源于“教师-学生”范式。我们先训练一个复杂但性能强大的“教师模型”,然后利用这个教师模型来指导一个轻量级的“学生模型”进行学习。生动的比喻(Hinton,2015):这个过程
- 教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践
观熵
人工智能DeepSeek私有化部署
教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践关键词:私有化部署、知识蒸馏、教师模型、学生模型、协同蒸馏、蒸馏训练、边缘部署、模型压缩、国产大模型、自监督微调摘要:随着国产大模型在企业私有化环境中的广泛部署,模型的压缩与推理性能优化成为核心挑战之一。本文聚焦“教师-学生协同知识蒸馏机制”在私有化系统中的实际融合路径,系统分析从教师模型选择、蒸馏数据构建、协同训练框
- 大模型驱动核工业智能化的技术架构与核心突破
Deepoch
人工智能创业创新语言模型
从数据闭环到自主决策,解码核能系统的AI技术演进路径Deepoc大模型通过构建多维度技术体系,在知识结构化处理、逻辑推理优化及多模态验证机制等方向取得关键技术突破,有效提升生成内容与行业知识库的匹配度。经第三方测试验证,在装备制造、能源管理等场景中,其生成内容的可验证性指标较基线模型提升62%,关键参数失真率控制在0.3%阈值内。通过构建行业知识蒸馏框架,该模型已形成覆盖12个垂直领域的定制化解决
- 深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
king of code porter
深度学习深度学习剪枝人工智能
一、引言在深度学习中,我们训练出的神经网络往往非常庞大(比如像ResNet、YOLOv8、VisionTransformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄像头、机器人等资源受限的设备上。于是我们就想出了一个办法:给模型“瘦身”,让它又快又轻,还能保持不错的准确率。这就是——模型压缩!模型压缩有三种最常用的方法:模型剪枝模型量化知识蒸馏下面我们分别来通
- 【深度学习解惑】结合神经网络结构剪枝或知识蒸馏,能否把 Inception 精剪到 mobile‑friendly 仍保持精度?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习神经网络剪枝人工智能Inception机器学习googlenet
Inception系列模型移动端压缩研究报告摘要Inception系列卷积神经网络(如GoogLeNet/Inceptionv1、v3等)通过模型剪枝和知识蒸馏等压缩技术可以显著减小模型规模,使其更适合移动端部署,同时保持较高的推理准确率。研究表明,大型Inception模型经过结构化剪枝可在参数量减少约10倍的情况下仅造成很小的精度下降;例如,Inception-v3模型即使剪除87.5%的权重
- 什么是知识蒸馏?如何做模型蒸馏?结合案例说明
一、什么是蒸馏?核心概念:在机器学习中,“蒸馏”指的是知识蒸馏。这是一种模型压缩技术,其核心思想是将一个大型、复杂、性能优越但计算成本高的模型(称为“教师模型”)所蕴含的“知识”或“智慧”,转移给一个小型、简单、计算效率高的模型(称为“学生模型”)。类比:就像化学中的蒸馏过程,通过加热和冷凝分离混合物中的组分,知识蒸馏试图从复杂教师模型的“知识混合物”中,提取出最精华、最核心的模式和关系,并将其“
- AI持续学习模型压缩与加速方法大全
AI智能探索者
人工智能学习ai
AI持续学习模型压缩与加速方法大全关键词:模型压缩、模型加速、持续学习、知识蒸馏、模型剪枝、量化、轻量化架构摘要:本文全面解析AI持续学习场景下的模型压缩与加速技术。从核心概念到具体方法,结合生活案例、代码示例与实战场景,系统讲解剪枝、量化、知识蒸馏等主流技术的原理与应用,帮助读者理解如何在持续学习中平衡模型性能与资源消耗,最终实现高效、可扩展的AI系统。背景介绍目的和范围随着AI技术普及,模型规
- DeepSeek赋能数据治理解决方案
公众号:优享智库
DEEPSEEKAI人工智能流程管理战略管理人力资源财务管理数字化转型数据治理主数据数据仓库人工智能大数据系统架构架构
方案通过DeepSeek的核心技术能力,旨在解决企业数据治理中的痛点问题,提升数据质量、优化数据管理流程,并支持企业的数字化转型和信创化发展。DeepSeek技术架构解析混合专家模型(MoE)创新:动态专家路由:通过门控网络实现专家动态选择,提升推理效率。分层专家专业化:底层专家专注语法/词法处理,中层专家处理语义理解,高层专家负责逻辑推理。跨专家知识蒸馏:通过教师-学生框架将不同领域专家的知识迁
- YOLOv5改进系列(二十五) 知识蒸馏理论与实践
小酒馆燃着灯
YOLO深度学习人工智能
文章目录知识蒸馏基础原理精讲1.什么是知识蒸馏?2.轻量化网络的方式有哪些?3.为什么要进行知识蒸馏?3.1提升模型精度3.2降低模型时延,压缩网络参数3.3标签之间的域迁移4.知识蒸馏的理论依据?5.知识蒸馏分类5.1目标蒸馏-Logits方法5.2特征蒸馏方法6.知识蒸馏的过程6.1升温(T)操作6.2温度(T)特点7.蒸馏损失计算过程8.知识蒸馏在NLP/CV中的应用8.1目标蒸馏-Logi
- 大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战
layneyao
aillama人工智能
大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战摘要引言一、轻量化技术路径对比1.参数剪枝:移除冗余连接2.知识蒸馏:教师-学生模型迁移3.量化压缩:精度与性能的平衡4.结构优化:轻量级架构设计二、框架与硬件协
- 知识蒸馏在小样本学习中的作用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
知识蒸馏在小样本学习中的作用关键词:知识蒸馏,小样本学习,深度神经网络,软标签,迁移学习,注意力机制摘要:本文将详细探讨知识蒸馏技术在小样本学习中的重要作用。首先,我们将介绍知识蒸馏的基本原理和在小样本学习中的应用,然后分析深度神经网络的基础知识以及知识蒸馏算法原理。接下来,我们将探讨小样本学习算法与模型,并通过实验和评估来验证知识蒸馏在小样本学习中的效果。最后,我们将讨论知识蒸馏的优化策略和面临
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- uDistil-Whisper:低数据场景下基于无标签数据过滤的知识蒸馏方法
tongxianchao
人工智能机器学习深度学习
uDistil-Whisper:Label-FreeDataFilteringforKnowledgeDistillationinLow-DataRegimes会议:2025年NAACL机构:卡内基梅降大学Abstract近期研究通过伪标签(pseudo-labels)将Whisper的知识蒸馏到小模型中,在模型体积减小50%的同时展现出优异性能,最终得到高效、轻量的专用模型。然而,基于伪标签的蒸
- 【AI大模型实战项目】llm-action:让天下没有难学的大模型
小城哇哇
人工智能AI大模型语言模型agiaillm模型微调
项目大体如下所示:目录LLM训练LLM训练实战LLM参数高效微调技术原理综述LLM参数高效微调技术实战LLM分布式训练并行技术分布式AI框架分布式训练网络通信LLM推理LLM推理框架✈️LLM推理优化技术♻️LLM压缩LLM量化LLM剪枝LLM知识蒸馏♑️低秩分解♍️LLM算法架构LLM应用开发️LLM国产化适配AI编译器AI基础设施LLMOpsLLM生态相关技术服务器基础环境安装及常用工具LLM
- 工程师视角下的 AI 知识蒸馏 - 小模型变强的秘密全解析 (AI Knowledge Distillation from an Engineer‘s Perspective)
新加坡内哥谈技术
人工智能
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/点击收看【工程师视角下的AI知识蒸馏-小模型变强的秘密全解析】https://www.b
- 智能推荐系统性能优化:模型压缩与加速
AIGC应用创新大全
CSDNai
智能推荐系统性能优化:模型压缩与加速关键词:智能推荐系统、模型压缩、模型加速、知识蒸馏、模型量化、参数剪枝、低秩分解摘要:智能推荐系统已成为互联网产品的"流量引擎",但随着推荐模型从FM、DeepFM进化到Transformer、多模态大模型,参数量从百万级飙升至百亿级,计算复杂度呈指数级增长。本文将用"拆快递"式的通俗语言,结合生活案例与代码实战,带你拆解模型压缩与加速的核心技术(知识蒸馏/剪枝
- JAVA也能做大模型蒸馏了?——浅析JBoltAI在大模型的应用
细胞派
java人工智能LLM大模型蒸馏
一、首先,什么是知识蒸馏?——蒸馏的技术本质知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术,其本质是通过构建教师-学生模型的知识迁移框架,将大模型(教师模型)的泛化能力"蒸馏"到小模型(学生模型)中。这一过程突破了传统剪枝、量化的技术局限,在保证模型性能的前提下可实现高达90%的模型体积压缩。关键技术突破体现在三个维度:1.隐层特征对齐:通过KL散度损失函数实现中
- DeepSeek量化训练核心技术:从原理到工业级部署的完整实践方案
燃灯工作室
Deepseek人工智能机器学习数据挖掘
1.主题背景1.1Why:模型压缩刚需传统AI模型在移动端部署面临内存占用大(ResNet-152约230MB)、推理延迟高(VGG16CPU推理>200ms)等问题。DeepSeek量化方案可实现:模型体积压缩4-8倍(FP32→INT8)推理速度提升2-5倍(利用硬件加速指令)保持95%+原始模型精度1.2行业定位在AI技术栈中属于模型优化层,介于算法研发与实际部署之间。与知识蒸馏、剪枝等技术
- PyTorch深度学习框架60天进阶学习计划 - 第47天:模型压缩蒸馏技术(一)
凡人的AI工具箱
深度学习pytorch学习人工智能生成对抗网络python
PyTorch深度学习框架60天进阶学习计划-第47天:模型压缩蒸馏技术(一)第一部分:知识蒸馏的温度调节机制详解欢迎来到我们学习计划的第47天!今天我们将深入探讨模型压缩技术中的两个重要方法:知识蒸馏和模型剪枝。在第一部分,我们将聚焦于知识蒸馏的温度调节机制。1.知识蒸馏概述知识蒸馏(KnowledgeDistillation)是GeoffreyHinton在2015年提出的一种模型压缩方法,核
- 第05篇:对抗蒸馏(Adversarial Knowledge Distillation)——让学生“骗过”判别器的秘密
厚衣服_3
「知识蒸馏全解:从原理到实战」人工智能
目录对抗蒸馏简介背后的动机与挑战方法原理详解模型结构设计PyTorch实现(含判别器与训练循环)训练策略与技巧实验效果与分析进阶变体与未来趋势总结对抗蒸馏简介:将GAN思维引入KD知识蒸馏(KnowledgeDistillation,KD)中,学生模型模仿教师模型的输出,学习其“行为”或“特征”。传统KD偏重于逐点对齐,比如SoftTargetKD通过KL散度对齐softlogits,而Featu
- 【DeepSeek】线上使用途径
行者无疆xcc
AIai
完整版R1:官方旗舰、性能巅峰在HuggingFace平台上,只有标有"DeepSeek-R1"的才是真正的"满血版"蒸馏版R1:轻量化设计、硬件友好通过知识蒸馏技术对大模型进行压缩,参数量大幅缩减至1.5亿至70亿(1.5B-70B)其底层架构融合了Qwen、Llama等开源模型的优势、硬件适配性更强、适合资源有限的场景。在HuggingFace带有Distill标签的均属于此类模型量化版通过牺
- Whisper 模型压缩技术:轻量级语音识别方案
AI学长带你学AI
CSDNwhisper语音识别人工智能ai
Whisper模型压缩技术:轻量级语音识别方案关键词:Whisper模型、模型压缩、轻量级语音识别、知识蒸馏、模型量化、剪枝优化、边缘部署摘要:本文深入探讨OpenAIWhisper模型的压缩技术体系,系统解析模型量化、结构剪枝、知识蒸馏等核心技术原理。通过数学建模分析压缩过程中的精度-效率平衡问题,结合PyTorch实战案例演示端到端压缩流程。重点阐述如何在保持语音识别精度的前提下,将Whisp
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc