- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 机器学习与深度学习的区别
eqa11
机器学习
文章目录机器学习与深度学习的区别一、引言二、机器学习概述1、机器学习定义1.1、机器学习的应用2、机器学习算法三、深度学习概述1、深度学习定义1.1、深度学习的应用2、深度学习算法四、机器学习与深度学习的区别1、学习方法2、数据需求3、应用领域五、总结机器学习与深度学习的区别一、引言在人工智能的浪潮中,机器学习和深度学习无疑是最耀眼的两颗明星。它们在许多领域都取得了令人瞩目的成就,从自动驾驶汽车到
- 图像去噪算法代码c语言,深度学习图像去噪代码
weixin_39777018
图像去噪算法代码c语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时导入操作||https://support.huaweicloud.com/engineers-
- 全流程Python编程、机器学习与深度学习实践技术应用
为为-180-3121-1455
深度学习机器学习pythonpython机器学习深度学习
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。为了帮助科研人员系统地掌握深度学习的基础理论及其在PyTorch中的实现方法,Ai尚研修特别推出了“最新PyTorch机器学习与深度学习技
- 最新ChatGPT支持下的PyTorch机器学习与深度学习
zkzhzy
ChatGPT机器学习python机器学习深度学习pytorchchatgpt数据分析人工智能
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。郁磊(副教授)主要从事AI人工智能、大语言模型及软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的科研经验,主编《MATLAB智能算
- 计算机视觉与图像处理面试题,深度学习图像处理算法工程师面试题
ZW9
计算机视觉与图像处理面试题
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时引入MoXingFramework模块||https://support.huaweicloud
- 深度学习+计算机语言,深度学习 计算机语言
中国计算机学会
深度学习+计算机语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时引入MoXingFramework模块||https://support.huaweicloud
- 【大厂AI课学习笔记】【1.6 人工智能基础知识】(1)人工智能、机器学习、深度学习之间的关系
giszz
学习笔记人工智能人工智能学习笔记
6.1人工智能、机器学习与深度学习的关系必须要掌握的内容:如上图:人工智能>机器学习>深度学习。机器学习是人工智能的一个分支,该领域的主要研究对象是人工智能,特别是如何在经验学习中改进具体算法的性能。深度学习是一种典型的机器学习方法,是一种基于对数据进行表征学习的算法。我们来学习更多的背景知识:人工智能、机器学习与深度学习的关系一、定义与概念解析人工智能(ArtificialIntelligenc
- 机器学习与深度学习
Hacoj
从零开始的人工智能学习机器学习深度学习人工智能
什么是机器学习机器学习是一门跨学科的学科,它致力于研究和开发让计算机能够模拟人类学习行为的技术和方法。机器学习涉及多个学科的知识,如概率论、统计学、逼近论、凸分析、算法复杂度理论等,这些学科为机器学习提供了理论基础和数学工具。机器学习的主要目标是通过对大量数据进行处理和分析,自动地发现数据中的规律和模式,然后利用这些规律和模式对新的数据进行预测和决策。这个过程不需要人类进行明确的编程和指令,而是让
- 普通编程,机器学习与深度学习
ALGORITHM LOL
机器学习深度学习人工智能
普通编程:基于人手动设置规则,由输入产生输出经典机器学习:人手工指定需要的特征,通过一些数学原理对特征与输出的匹配模式进行学习,也就是更新相应的参数,从而使数学表达式能够更好的根据给定的特征得到准确的输出结果。表示学习:包含深度学习,通过输入由算法生成简单的特征,再逐层生成更加全局/抽象的特征,最后,通过一些数学原理对特征与输出的匹配模式进行学习,也就是更新相应的参数,从而使数学表达式能够更好的根
- AI鲜为人知的秘密:机器学习与深度学习概论
Hunter乔乔
人工智能人工智能机器学习深度学习
文章目录思维导图前言一、人工智能、机器学习与深度学习二、机器学习1、机器学习的实现原理2、学习任务3、确定模型三、深度学习1、神经网络2、深度学习当代发展四、推荐书籍及课程1、学习书籍2、推荐课程总结思维导图前言2022年11月30日,美国人工智能研究公司OpenAI发布全新的聊天机器人模型ChatGPT。上线仅五天,用户数量就突破100万人。2023年,大语言模型及其在人工智能领域的应用已成为全
- 机器学习复习(1)——任务整理流程
不会写代码!!
机器学习复习机器学习算法人工智能机器学习人工智能
目录固定的随机数种子定义predict功能拆分数据集定义trainer超参数设置数据集载入固定的随机数种子在大量的机器学习与深度学习实验中,如果不进行特殊设置,我们的结果将不可复现,固定的随机数种子将会解决这个问题defsame_seed(seed):'''设置随机种子(便于复现)'''torch.backends.cudnn.deterministic=Truetorch.backends.cu
- GPT4+Python近红外光谱数据分析及机器学习与深度学习建模
慢腾腾的小蜗牛
python数据分析机器学习近红外光谱遥感gpt
详情点击链接:GPT4+Python近红外光谱数据分析及机器学习与深度学习建模第一:GPT4入门基础1、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)2、ChatGPT对话初体验(注册与充值、购买方法)3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别4、ChatGPT科研必备插件(DataInterpreter、W
- 深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
搬砖班班长
深度学习人工智能学习经验分享
经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。下面给出几个链接,可以用于平时充电学习。知乎上的:机器学习与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
- GPT4+Python近红外光谱数据分析及机器学习与深度学习建模
夏日恋雨
遥感人工智能python数据分析机器学习近红外光谱高光谱chatgpt人工智能
详情点击链接:GPT4+Python近红外光谱数据分析及机器学习与深度学习建模第一:GPT41、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)2、ChatGPT对话初体验3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别4、ChatGPT科研必备插件(DataInterpreter、Wolfram、WebPilot、Mi
- 01 机器学习与深度学习
幽径微澜
深度学习pythonpytorch深度学习笔记
源自:《深度学习》(徐立芳/主编莫宏伟/副主编)1.11.2机器学习方法类型1.监督式学习每个训练数据集包含输入和正确输出。在分类问题中,就是通过学习带有分类标签的样本,使用模型对未知的样本进行正确分类的过程。常见算法有逻辑回归和反向传播神经网络。2.无监督式学习训练数据仅包含输入,没有正确输出。通过研究数据的特征和进行数据的处理、分析,获得一个结果。常见算法包括Apriori算法、k-Means
- 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程
夏日恋雨
遥感人工智能python数据分析机器学习近红外光谱高光谱迁移学习chatgpt
详情点击链接:基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程第一:GPT41、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)2、ChatGPT对话初体验3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别4、ChatGPT科研必备插件(DataInterpreter、Wolfram、Web
- 如何将ChatGPT4与Python近红外光谱数据分析及机器学习与深度学习建模完美融合
zmjia111
python数据分析机器学习chatgpt深度学习人工智能近红外光谱
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,为了熟练地掌
- 一文了解ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模应用
AIzmjl
机器学习深度学习GPTpython数据分析机器学习深度学习人工智能chatgptYOLO
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,为了熟练地掌
- 常见机器学习算法总结
婉妃
基本算法总结正面.jpeg图的左半部分列出了常用的机器学习算法与它们之间的演化关系,分为有监督学习,无监督学习,强化学习3大类。右半部分列出了典型算法的总结比较,包括算法的核心点如类型,预测函数,求解的目标函数,求解算法。理解和记忆这张图,对你系统化的掌握机器学习与深度学习会非常有帮助!基本公式反面.jpeg
- 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模
PhyliciaFelicia
python深度学习SCI论文python机器学习chatgpt深度学习数据分析
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- 基于GPT4+Python近红外光谱数据分析及机器学习与深度学习建模
慢腾腾的小蜗牛
python数据分析机器学习chatgpt近红外光谱人工智能大数据分析
详情点击链接:基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程第一:GPT4基础1、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)2、ChatGPT对话初体验(注册与充值、购买方法)3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别4、ChatGPT科研必备插件(DataInterpr
- ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模
梦想的初衷~
人工智能chatgptpython数据分析机器学习
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模
asyxchenchong888
gpt4GPT机器学习人工智能chatgptpython
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程
夏日恋雨
人工智能遥感生态学python数据分析机器学习近红外光谱深度学习人工智能大数据
详情点击链接:基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程第一:GPT4基础1、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)2、ChatGPT对话初体验(注册与充值、购买方法)3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别4、ChatGPT科研必备插件(DataInterpret
- 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模
科研小白 新人上路
python数据分析机器学习chatgpt近红外线数据分析
022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是
- ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模进阶应用
Teacher.chenchong
gpt机器学习python数据分析机器学习
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模
Mr.靳靳477302280
人工智能近红外光谱python数据分析机器学习
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- 基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模
思考的小猴子
机器学习python数据分析机器学习
2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更
- 机器学习常用算法模型总结
几窗花鸢
机器学习机器学习算法人工智能回归分类
文章目录1.基础篇:了解机器学习1.1什么是机器学习1.2机器学习的场景1.2.1模式识别1.2.2数据挖掘1.2.3统计学习1.2.4自然语言处理1.2.5计算机视觉1.2.6语音识别1.3机器学习与深度学习1.4机器学习和人工智能1.5机器学习的数学基础特征值和特征向量的定义2.算法模型篇2.1线性回归模型2.1.1什么是线性回归模型?2.1.2一元线性回归数学原理知识点:最小二乘法代码实现一
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s