bzoj2154/bzoj2693/洛谷P1829 Crash的数字表格 莫比乌斯反演

1.题目链接

https://www.luogu.org/problemnew/show/P1829#sub

2.题面

题目描述

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数。例如,LCM(6, 8) = 24。

回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下:

1    2    3    4    5
2    2    6    4    10
3    6    3    12    15
4    4    12    4    20

看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod20101009的值。

输入输出格式

输入格式:

 

输入的第一行包含两个正整数,分别表示N和M。

 

输出格式:

 

输出一个正整数,表示表格中所有数的和mod20101009的值。

 

输入输出样例

输入样例#1: 复制

4 5

输出样例#1: 复制

122

说明

30%的数据满足N, M≤ 10^3。

70%的数据满足N, M≤ 10^5。

100%的数据满足N, M≤ 10^7。

3.题意思路

bzoj2154/bzoj2693/洛谷P1829 Crash的数字表格 莫比乌斯反演_第1张图片

 

 

5.代码

#include
#define N 10010000
using namespace std;
inline void read(int &x)
{
    x=0;
    static int p;p=1;
    static char c;c=getchar();
    while(!isdigit(c)){if(c=='-')p=-1;c=getchar();}
    while(isdigit(c)) {x=(x<<1)+(x<<3)+(c-48);c=getchar();}
    x*=p;
}
const long long mod=20101009;
int n,m;
bool vis[N];
int cnt,prim[N],mu[N];
long long sum[N];
void get_mu(int maxn)
{
    mu[1]=1;
    for(int i=2;i<=maxn;i++)
    {
        if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
        for(int j=1;j<=cnt&&prim[j]*i<=maxn;j++)
        {
            vis[i*prim[j]]=1;
            if(i%prim[j]==0)break;
            else mu[i*prim[j]]=-mu[i];
        }
    }
    for(int i=1;i<=maxn;i++)(sum[i]=sum[i-1]+1ll*mu[i]*1ll*i%mod*1ll*i%mod)%=mod;
}
int main()
{
    read(n);read(m);
    int max_rep=0;
    get_mu(max_rep=min(n,m));
    long long ans=0;
    long long inv2=(mod+1ll)/2ll;
    long long summ=0;
    for(int d=1;d<=max_rep;d++)
    {
        int maxx=n/d,maxy=m/d,minn=min(maxx,maxy);
        summ=0ll;
        for(int l=1,r;l<=minn;l=r+1ll)
        {
            r=min(maxx/(maxx/l),maxy/(maxy/l));
            (summ+=(sum[r]-sum[l-1])%mod*(((1ll+maxx/l)%mod*1ll*(maxx/l)%mod*inv2%mod)%mod)%mod*(((1ll+maxy/l)%mod*1ll*(maxy/l)%mod*inv2%mod)%mod)%mod)%=mod;
        }
        (ans+=summ*1ll*d)%=mod;
    }
    cout<<(ans%mod+mod)%mod<

6.总结

本来过不动 后来按照别人题解的方法整除分块 照着改了一下就好了

整除分块 也挺重要的http://www.cnblogs.com/peng-ym/p/8661118.html

算法复杂度O(nlogn) 感觉好像还能优化

 

你可能感兴趣的:(bzoj2154/bzoj2693/洛谷P1829 Crash的数字表格 莫比乌斯反演)