Tarjan 算法总结

一些概念

连通:无向图中的任意两点都可以互相到达。

强连通:有向图中的任意两点都可以互相到达。

连通分量:无向图的极大连通子图。

强连通分量:有向图的极大强连通子图。


DFS 生成树:对一张图(有向无向均可)进行深度优先遍历得到的生成树。

树边:在 DFS 生成树上的边。

前向边:由子树的根连向子树内的非树边。

返祖边:由结点连向其祖先的边。

横叉边:除上面三种之外的边。

求强连通分量

对于结点 \(u\),记录两个信息 \(dfn_u\)\(low_u\)

\(dfn\) 表示时间戳,即第几个被遍历到的点。

\(low\) 表示从当前点开始,经过的边的两个端点均未处在已找出的强连通分量中,能到达最小的时间戳。

在 dfs 的过程中,将经过的点塞进一个栈里面。一旦发现 \(dfn_u=low_u\) 就一直弹栈直至弹出结点 \(u\),弹出的这些点就构成了一个强连通分量。

然后考虑如何求出 \(low_u\),枚举 \(u\) 的每条出边 \((u,v)\)

  • 结点 \(v\) 未遍历过,先递归处理该点,这样 \((u,v)\) 就成了树边,然后 \(low_u\gets\min(low_u,low_v)\)

  • 结点 \(v\) 已遍历过。

    • 结点 \(v\) 处在一个已找出的强连通分量中,根据定义直接跳过。
    • 结点 \(v\) 未处在已找出的强连通分量中,这样 \((u,v)\) 就成了非树边,同样地,\(low_u\gets\min(low_u,low_v)\)

\(low\) 数组其实是在找一条向上的路径,而两个强连通分量是不可能有公共点的,所以我们才会有经过边的限制。

但是还有一个问题,\(low\) 数组有时会不能更新完全,怎么办呢?

其实是没有关系的,\(low\) 数组的目的仅仅是判断当前强连通块是否能够继续向上合并

那么算法的正确性就很显然了,在合法的情况下(\(low\) 的定义)尽可能将当前强连通分量扩大

你可能感兴趣的:(Tarjan 算法总结)