本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战,如:
等典型数据ETL功能的探索。
系列文章:
1.大数据ETL实践探索(1)---- python 与oracle数据库导入导出
2.大数据ETL实践探索(2)---- python 与aws 交互
3.大数据ETL实践探索(3)---- pyspark 之大数据ETL利器
4.大数据ETL实践探索(4)---- 之 搜索神器elastic search
5.使用python对数据库,云平台,oracle,aws,es导入导出实战
6.aws ec2 配置ftp----使用vsftp
本文主要使用python基于oracle和aws 相关组件进行一些基本的数据导入导出实战,oracle使用数据泵impdp进行导入操作,aws使用awscli进行上传下载操作。本地文件上传至aws es,spark dataframe录入ElasticSearch等典型数据ETL功能的探索。
本文主要使用最新版本的oracle 12c,如果创建oracle数据库时候使用了数据库容器(CDB)承载多个可插拔数据库(PDB)的模式,那么数据库的用户名需要用c##开头,使用数据泵进行操作 的时候也有一些不同:
在CDB中,只能创建以c##或C##开头的用户,如果不加c##,则会提示错误“ORA-65096:公用用户名或角色名无效”,只有在PDB数据库中才能创建我们习惯性命名的用户,oracle称之为Local User,前者称之为Common User。
创建的时候不要勾选:
https://www.cnblogs.com/xqzt/p/5034261.html
https://www.cnblogs.com/fanyongbin/p/5699482.html
Download and install Oracle 12C,
Http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
Under windows10, use sqlplus to log in
you should first
set oracle_sid=orcl
Sqlplus /nolog
conn /as SYSDBA
Creating a user
Syntax [creating the user]:
create user username identified by password [that is the password];
E.g.
Create user [username] identified by [password];
Default tablespace [tablespacename]
Temporary tablespace temp;
Grant DBA to username;
.
由于全库导入的时候oracle_home和之前的数据库发生了改变,所以原来数据库的表空间需要提前建立。可以根据导出日志或者导入日志的报错,查看原来数据库中到底有那些表空间。特别注意有关视图和索引的表空间和用户也需要提起建立好。当然如果你只要数据的话就不太影像了。基本上使用表空间就可以全部导入。
Create table space :
E.g
Create tablespace xxx datafile'f:\xxx.dbf'size 200M AUTOEXTEND on;
从oracle库中导出 数据可以使用oracle数据泵程序,全库导出实例如下:
Expdp username/password FULL=y DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=job
以下命令的导入并不是全库导入,如果需要全库导入的话,由于oracle_home 的改变,需要提前建立好用户和表空间,以及索引的表空间,视图的用户等
command as follow:
Impdp username/password@orcl full=y directory=dir_yiliao dumpfile=full1%U.dmp remap_schema=username_old:username_new exclude=GRANT remap_tablespace='(t1:tempt1, t2:tempt2) ' tablespaces=tempt1,temp2
以下两种导入方式只能二选一:
整体说明
https://www.2cto.com/database/201605/508212.html
使用oracle函数 utl_file 进行快速导入导出(一分钟300万条的量级),这个比spool快多啦
CREATE OR REPLACE PROCEDURE SQL_TO_CSV
(
P_QUERY IN VARCHAR2, -- PLSQL文
P_DIR IN VARCHAR2, -- 导出的文件放置目录
P_FILENAME IN VARCHAR2 -- CSV名
)
IS
L_OUTPUT UTL_FILE.FILE_TYPE;
L_THECURSOR INTEGER DEFAULT DBMS_SQL.OPEN_CURSOR;
L_COLUMNVALUE VARCHAR2(4000);
L_STATUS INTEGER;
L_COLCNT NUMBER := 0;
L_SEPARATOR VARCHAR2(1);
L_DESCTBL DBMS_SQL.DESC_TAB;
P_MAX_LINESIZE NUMBER := 32000;
BEGIN
--OPEN FILE
L_OUTPUT := UTL_FILE.FOPEN(P_DIR, P_FILENAME, 'W', P_MAX_LINESIZE);
--DEFINE DATE FORMAT
EXECUTE IMMEDIATE 'ALTER SESSION SET NLS_DATE_FORMAT=''YYYY-MM-DD HH24:MI:SS''';
--OPEN CURSOR
DBMS_SQL.PARSE(L_THECURSOR, P_QUERY, DBMS_SQL.NATIVE);
DBMS_SQL.DESCRIBE_COLUMNS(L_THECURSOR, L_COLCNT, L_DESCTBL);
--DUMP TABLE COLUMN NAME
FOR I IN 1 .. L_COLCNT LOOP
UTL_FILE.PUT(L_OUTPUT,L_SEPARATOR || '"' || L_DESCTBL(I).COL_NAME || '"'); --输出表字段
DBMS_SQL.DEFINE_COLUMN(L_THECURSOR, I, L_COLUMNVALUE, 4000);
L_SEPARATOR := ',';
END LOOP;
UTL_FILE.NEW_LINE(L_OUTPUT); --输出表字段
--EXECUTE THE QUERY STATEMENT
L_STATUS := DBMS_SQL.EXECUTE(L_THECURSOR);
--DUMP TABLE COLUMN VALUE
WHILE (DBMS_SQL.FETCH_ROWS(L_THECURSOR) > 0) LOOP
L_SEPARATOR := '';
FOR I IN 1 .. L_COLCNT LOOP
DBMS_SQL.COLUMN_VALUE(L_THECURSOR, I, L_COLUMNVALUE);
UTL_FILE.PUT(L_OUTPUT,
L_SEPARATOR || '"' ||
TRIM(BOTH ' ' FROM REPLACE(L_COLUMNVALUE, '"', '""')) || '"');
L_SEPARATOR := ',';
END LOOP;
UTL_FILE.NEW_LINE(L_OUTPUT);
END LOOP;
--CLOSE CURSOR
DBMS_SQL.CLOSE_CURSOR(L_THECURSOR);
--CLOSE FILE
UTL_FILE.FCLOSE(L_OUTPUT);
EXCEPTION
WHEN OTHERS THEN
RAISE;
END;
/
创建数据库目录
sql>create or replace directory OUT_PATH as 'D:\';
运行以下sql
SELECT 'EXEC sql_to_csv(''select * from ' ||T.TABLE_NAME ||''',''OUT_PATH''' || ',''ODS_MDS.' || T.TABLE_NAME ||'.csv'');' FROM user_TABLES T where t.TABLE_NAME='表名'
得到以下的批量sql,导出来,生成.sql脚本,在命令行中执行即可.
EXEC sql_to_csv('select * from table1','OUT_PATH','table1.csv');
EXEC sql_to_csv('select * from table2','OUT_PATH','table2.csv');
For reference, the links are as follows
Https://blog.csdn.net/huangzhijie3918/article/details/72732816
使用awscli上传大文件,当然直接浏览器上传也行,但是好像超过4g会有问题。
Download Windows Installer
Https://docs.aws.amazon.com/zh_cn/cli/latest/userguide/awscli-install-windows.html#awscli-install-windows-path
When installed, use
AWS --version
to confirm whether it is normal
Single file upload eg.
AWS S3 --region cn-north-1 CP CL_CLLI_LOG.csv s3://xxxx/csv/
You can use the notepad++'s block pattern, edit each table into a command, and execute the bat file in the CMD,like below:
aws s3 --region cn-north-1 cp LOG1.csv s3://xxxx/csv/
aws s3 --region cn-north-1 cp LOG2.csv s3://xxxx/csv/
修改访问策略,设置本地电脑的公网ip,这个经常会变化,每次使用时候需要设置一下
安装anancota
https://www.anaconda.com/download/
初始化环境,win10下打开Anaconda Prompt 的命令行
conda create -n elasticsearch python=3.6
source activate elasticsearch
pip install elasticsearch
pip install pandas
使用脚本如下:windows获取当前文件夹下所有csv并建立索引入es
from elasticsearch import helpers, Elasticsearch
import pandas as pd
from time import time
import win_unicode_console
win_unicode_console.enable()
import os
def file_name(file_dir):
for root, dirs, files in os.walk(file_dir):
print(root) #当前目录路径
print(dirs) #当前路径下所有子目录
print(files) #当前路径下所有非目录子文件
return [item for item in files if '.csv' in item]
root_path=os.getcwd()+'\\'
fileslist = file_name(root_path)
# size of the bulk
chunksize=50000
for file in fileslist:
t0=time()
f = open(root_path+file,'r', encoding='UTF-8') # read csv
# 使用 pandas 解析csv
csvfile=pd.read_csv(f, iterator=True, chunksize=chunksize,low_memory=False)
# 初始化es
es = Elasticsearch(["https://yoururl.amazonaws.com.cn"])
# 初始化索引
try :
es.indices.delete(file.strip('.csv').lower())
except :
pass
es.indices.create(file.strip('.csv').lower())
# start bulk indexing
print("now indexing %s..."%(file))
for i,df in enumerate(csvfile):
print(i)
records=df.where(pd.notnull(df), None).T.to_dict()
list_records=[records[it] for it in records]
try :
helpers.parallel_bulk(es, list_records, index=file.strip('.csv').lower(), doc_type=file.strip('.csv').lower(),thread_count=8)
except :
print("error!, skip records...")
pass
print("done in %.3fs"%(time()-t0))
上一段代码发现,数据录入es时候有问题,由于并行录入是懒加载的模式,所以数据居然没录进去,按照下面链接提供的思路,代码需要如下修改:
代码实例:
https://www.programcreek.com/python/example/104891/elasticsearch.helpers.parallel_bulk
参考帖子:
https://discuss.elastic.co/t/helpers-parallel-bulk-in-python-not-working/39498
from elasticsearch import helpers, Elasticsearch
import pandas as pd
from time import time
from elasticsearch.helpers import BulkIndexError
from elasticsearch.exceptions import TransportError,ConnectionTimeout,ConnectionError
import traceback
import logging
logging.basicConfig(filename='log-for_.log',
format='%(asctime)s -%(name)s-%(levelname)s-%(module)s:%(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',
level=logging.ERROR)
import win_unicode_console
win_unicode_console.enable()
import os
def file_name(file_dir):
for root, dirs, files in os.walk(file_dir):
print(root) #当前目录路径
print(dirs) #当前路径下所有子目录
print(files) #当前路径下所有非目录子文件
return [item for item in files if '.csv' in item]
#NAME = "PV_PROV_LOG"
root_path=os.getcwd()+'\\'
#csv_filename="%s.csv" % NAME
fileslist = file_name(root_path)
# size of the bulk
chunksize=1000
for file in fileslist:
t0=time()
# open csv file
f = open(root_path+file,'r', encoding='UTF-8') # read csv
# parse csv with pandas
csvfile=pd.read_csv(f, iterator=True, chunksize=chunksize,low_memory=False)
# init ElasticSearch
es = Elasticsearch(["..."])
# init index
try :
es.indices.delete(file.strip('.csv').lower())
except :
pass
es.indices.create(file.strip('.csv').lower())
# start bulk indexing
print("now indexing %s..."%(file))
for i,df in enumerate(csvfile):
print(i)
records=df.where(pd.notnull(df), None).T.to_dict()
list_records=[records[it] for it in records]
#print(list_records)
try :
#helpers.bulk(es, list_records, index=file.strip('.csv').lower(), doc_type=file.strip('.csv').lower())
for success, info in helpers.parallel_bulk(es, list_records, index=file.strip('.csv').lower(), doc_type=file.strip('.csv').lower(),thread_count=8):
if not success:
print('A document failed:', info)
#helpers.parallel_bulk(es, list_records, index=file.strip('.csv').lower(), doc_type=file.strip('.csv').lower(),thread_count=8)
except ConnectionTimeout:
logging.error("this is ES ConnectionTimeout ERROR \n %s"%str(traceback.format_exc()))
logging.info('retry bulk es')
except TransportError:
logging.error("this is ES TransportERROR \n %s"%str(traceback.format_exc()))
logging.info('retry bulk es')
except ConnectionError:
logging.error("this is ES ConnectionError ERROR \n %s"%str(traceback.format_exc()))
logging.info('retry bulk es')
except BulkIndexError:
logging.error("this is ES BulkIndexError ERROR \n %s"%str(traceback.format_exc()))
logging.info('retry bulk es')
pass
except Exception:
logging.error("exception not match \n %s"%str(traceback.format_exc()))
logging.error('retry bulk es')
pass
except :
print("error!, skiping some records")
print (list_records)
print(json.loads(result))
pass
print("done in %.3fs"%(time()-t0))
输入年月等信息,拼接字符串导出表, 下面 的脚本可以循环接受输入
@echo off
:begin
::年份
set input_year=
set /p input_year=Please input year :
::月份
set input_month=
set /p input_month=Please input month :
::字符串前缀
set prefix=ex_vw_
::字符串拼接
set "table_name=%prefix%%input_year%%input_month%"
echo Your input table_name:%table_name%
echo Your input time:%input_year%-%input_month%
::sqlplus 执行sql脚本 后带参数
sqlplus username/password@ip/instanceNname @createtable.sql %table_name% %input_year%-%input_month%
rem pause>null
goto begin
以下sql脚本为createtable.sql,接受两个参数,写做:&1 ,&2 …如果多个参数可以依次写下去。
drop table &1;
create table &1 as select * from some_table_view where incur_date_from = to_date('&2-01','yyyy-mm-dd');
Insert into &1 select * from some_table_view where incur_date_from = to_date('&2-02','yyyy-mm-dd');
commit;
quit;
后来发现一个问题,比如上面的第2小节的存储过程 SQL_TO_CSV,死活没法成功执行,只好安装cx_oracle ,用python 导出了,代码如下。
主要逻辑是,按照月份 ,执行视图生成这个月每天的数据插入到表中,当一个月的数据执行完毕,将这个月份表导出。
类似这种流程化的东西,python果然还是利器
# -*- coding:utf-8 -*-
"""@author:season@file:export_view.py@time:2018/5/211:19"""
import cx_Oracle
import calendar
########################链接数据库相关######################################
def getConnOracle(username,password,ip,service_name):
try:
conn = cx_Oracle.connect(username+'/'+password+'@'+ip+'/'+service_name) # 连接数据库
return conn
except Exception:
print(Exception)
#######################进行数据批量插入#######################
def insertOracle(conn,year,month,day):
yearandmonth = year + month
table_name ='ex_vw_'+ yearandmonth
cursor = conn.cursor()
##创建表之前先删除表
try:
str_drop_table = '''drop table ''' + table_name
cursor.execute(str_drop_table)
except cx_Oracle.DatabaseError as msg:
print(msg)
try:
#create table and insert
str_create_table = '''create table ''' + table_name+ ''' as select * from EXPORT where date_from = to_date(' '''+ year + '-'+ month + '''-01','yyyy-mm-dd')'''
print(str_create_table)
cursor.execute(str_create_table)
for i in range(2,day):
if i < 10:
str_incert = '''Insert into ''' + table_name +''' select * from EXPORT where date_from = to_date(' '''+ year+'-'+month+'-'+str(0)+str(i)+'''','yyyy-mm-dd')'''
else:
str_incert = '''Insert into ''' + table_name + ''' select * from EXPORT where date_from = to_date(' '''+ year+'-'+month+'-'+ str(i)+'''','yyyy-mm-dd')'''
print(str_incert)
cursor.execute(str_incert)
conn.commit()
conn.commit()
#export big_table
str_QUERY = 'select * from ex_vw_'+ yearandmonth
str_DIR = 'OUT_PATH'
str_FILENAME = 'EXPORT'+yearandmonth+'.csv'
cursor.callproc('SQL_TO_CSV', [str_QUERY,str_DIR, str_FILENAME])
except cx_Oracle.DatabaseError as msg:
print(msg)
#导出数据后drop table
try:
str_drop_table = '''drop table ''' + table_name
print(str_drop_table)
cursor.execute(str_drop_table)
except cx_Oracle.DatabaseError as msg:
print(msg)
cursor.close()
def main():
username = 'xxx'
password = 'xxx'
ip = '127.0.0.1'
service_name = 'orcl'
#获取数据库链接
conn = getConnOracle(username,password,ip,service_name)
monthlist = ['06','05','04','03','02','01']
daylist = [30,31,30,31,28,31]
for i in range(0,len(monthlist)):
insertOracle(conn,'2018',monthlist[i],daylist[i]+1)
conn.close()
if __name__ == '__main__':
main()
初始化, spark 第三方网站下载包:elasticsearch-spark-20_2.11-6.1.1.jar
http://spark.apache.org/third-party-projects.html
import sys
import os
print(os.getcwd())
# 加载包得放在这里
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars elasticsearch-spark-20_2.11-6.1.1.jar pyspark-shell'
import os
from pyspark.sql import SparkSession
from pyspark import SparkConf
from pyspark.sql.types import *
from pyspark.sql import functions as F
from pyspark.storagelevel import StorageLevel
import json
import math
import numbers
import numpy as np
import pandas as pd
os.environ["PYSPARK_PYTHON"] = "/home/hadoop/anaconda/envs/playground_py36/bin/python"
try:
spark.stop()
print("Stopped a SparkSession")
except Exception as e:
print("No existing SparkSession")
SPARK_DRIVER_MEMORY= "10G"
SPARK_DRIVER_CORE = "5"
SPARK_EXECUTOR_MEMORY= "3G"
SPARK_EXECUTOR_CORE = "1"
conf = SparkConf().\
setAppName("insurance_dataschema").\
setMaster('yarn-client').\
set('spark.executor.cores', SPARK_EXECUTOR_CORE).\
set('spark.executor.memory', SPARK_EXECUTOR_MEMORY).\
set('spark.driver.cores', SPARK_DRIVER_CORE).\
set('spark.driver.memory', SPARK_DRIVER_MEMORY).\
set('spark.driver.maxResultSize', '0').\
set("es.index.auto.create", "true").\
set("es.resource", "tempindex/temptype").\
set("spark.jars", "elasticsearch-hadoop-6.1.1.zip") # set the spark.jars
spark = SparkSession.builder.\
config(conf=conf).\
getOrCreate()
sc=spark.sparkContext
hadoop_conf = sc._jsc.hadoopConfiguration()
hadoop_conf.set("mapreduce.fileoutputcommitter.algorithm.version", "2")
#数据加载
df = (spark
.read
.option("header","true")
.option("multiLine", "true")
.csv('EXPORT.csv')
.cache()
)
print(df.count())
#
'''
#加一列yiyong ,如果是众城数据则为zhongcheng
'''
from pyspark.sql.functions import udf
from pyspark.sql import functions
df = df.withColumn('customer',functions.lit("腾讯用户"))
#udf 清洗时间
#清洗日期格式字段
from dateutil import parser
def clean_date(str_date):
try:
if str_date:
d = parser.parse(str_date)
return d.strftime('%Y-%m-%d')
else:
return None
except Exception as e:
return None
func_udf_clean_date = udf(clean_date, StringType())
def is_number(s):
try:
float(s)
return True
except ValueError:
pass
return False
def clean_number(str_number):
try:
if str_number:
if is_number(str_number):
return str_number
else:
None
else:
return None
except Exception as e:
return None
func_udf_clean_number = udf(clean_number, StringType())
column_Date = [
"DATE_FROM",
"DATE_TO",
]
for column in column_Date:
df=df.withColumn(column, func_udf_clean_date(df[column]))
df.select(column_Date).show(2)
#数据写入
df.write.format("org.elasticsearch.spark.sql").\
option("es.nodes", "IP").\
option("es.port","9002").\
mode("Overwrite").\
save("is/doc")
未完待续