三种常用正交坐标系下的梯度、散度与旋度

1、空间直角坐标系

空间直角坐标系中,使用坐标 ( x , y , z ) (x,y,z) (x,y,z)来确定位置,对应的单位矢量分别为 i \bm{i} i, j \bm{j} j, k \bm{k} k。设 F = ( F x , F y , F z ) \bm{F}=(F_x,F_y,F_z) F=(Fx,Fy,Fz)为矢量场, f f f 为标量场。则

  • 梯度
    ∇ f = ∂ f ∂ x i + ∂ f ∂ y j + ∂ f ∂ z k \bm{\nabla}f=\frac{\partial f}{\partial x}\bm{i}+\frac{\partial f}{\partial y}\bm{j}+\frac{\partial f}{\partial z}\bm{k} f=xfi+yfj+zfk

标量求梯度后是一个矢量。

  • 散度
    ∇ ⋅ F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \bm{\nabla \cdot F}=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z} F=xFx+yFy+zFz

矢量求散度后是一个标量。

  • 旋度
    ∇ × F = ( ∂ F z ∂ y − ∂ F y ∂ z ) i + ( ∂ F x ∂ z − ∂ F z ∂ x ) j + ( ∂ F y ∂ x − ∂ F x ∂ y ) k \bm{\nabla}\times\bm{F}=(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z})\bm{i}+(\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x})\bm{j}+(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y})\bm{k} ×F=(yFzzFy)i+(zFxxFz)j+(xFyyFx)k

  • 拉普拉斯算符
    ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 \nabla ^2 f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} 2f=x22f+y22f+z22f

2、柱坐标系

柱坐标系是用平面极坐标系再加上 z z z方向来确定位置,柱坐标系下的三个坐标变量分别为 ρ \rho ρ φ \varphi φ z z z,它们与空间直角坐标系的关系为
x = ρ cos ⁡ φ y = ρ sin ⁡ φ z = z x=\rho\cos\varphi \\ y=\rho\sin \varphi \\ z=z x=ρcosφy=ρsinφz=z
三种常用正交坐标系下的梯度、散度与旋度_第1张图片
三个单位矢量分别为
e ⃗ ρ \vec{e}_\rho e ρ :沿着径向由 O O O点向外
e ⃗ φ \vec{e}_{\varphi} e φ:在 x y xy xy平面内,沿着逆时针方向且垂直于 e ⃗ r \vec{e}_r e r
e ⃗ z \vec{e}_z e z:沿着 z z z方向,与平面直角坐标系下的 k \bm{k} k一致

  • 梯度
    ∇ f = e ⃗ ρ ∂ f ∂ ρ + e ⃗ φ 1 ρ ∂ f ∂ φ + e ⃗ z ∂ f ∂ z \bm{\nabla}f=\vec{e}_\rho\frac{\partial f}{\partial \rho}+\vec{e}_{\varphi}\frac{1}{\rho}\frac{\partial f}{\partial \varphi}+\vec{e}_z\frac{\partial f}{\partial z} f=e ρρf+e φρ1φf+e zzf

  • 散度
    ∇ ⋅ F = 1 ρ ∂ ∂ ρ ( ρ F ρ ) + 1 ρ ∂ F φ ∂ φ + ∂ F z ∂ z \bm{\nabla \cdot} \bm{F}=\frac{1}{\rho}\frac{\partial}{\partial \rho}(\rho F_\rho)+\frac{1}{\rho}\frac{\partial F_\varphi}{\partial \varphi}+\frac{\partial F_z}{\partial z} F=ρ1ρ(ρFρ)+ρ1φFφ+zFz

  • 旋度
    ∇ × F = 1 ρ ∣ e ⃗ ρ e ⃗ φ e ⃗ z ∂ ∂ ρ ∂ ∂ φ ∂ ∂ z F ρ ρ F φ F z ∣ = 1 ρ { [ ∂ F z ∂ φ − ∂ ∂ φ ( ρ F φ ) ] e ⃗ ρ + ( ∂ F ρ ∂ z − ∂ F z ∂ ρ ) e ⃗ φ + [ ∂ ∂ ρ ( ρ F φ ) − ∂ F ρ ∂ φ ] e ⃗ z } \bm{\nabla}\times \bm{F}=\frac{1}{\rho} \begin{vmatrix} \vec{e}_\rho & \vec{e}_{\varphi} & \vec{e}_z \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ F_\rho & \rho F_\varphi & F_z \end{vmatrix} =\frac{1}{\rho} \{ [\frac{\partial F_z}{\partial \varphi}-\frac{\partial}{\partial \varphi}(\rho F_\varphi)] \vec{e}_\rho + (\frac{\partial F_\rho}{\partial z}-\frac{\partial F_z}{\partial \rho}) \vec{e}_\varphi + [\frac{\partial }{\partial \rho}(\rho F_\varphi)-\frac{\partial F_\rho}{\partial \varphi}] \vec{e}_z \} ×F=ρ1e ρρFρe φφρFφe zzFz=ρ1{[φFzφ(ρFφ)]e ρ+(zFρρFz)e φ+[ρ(ρFφ)φFρ]e z}

  • 拉普拉斯算符
    ∇ 2 f = 1 ρ ∂ ∂ ρ ( ρ ∂ f ∂ ρ ) + 1 ρ 2 ∂ 2 f ∂ φ 2 + ∂ 2 f ∂ z 2 \nabla ^2 f=\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial f}{\partial \rho}) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2}+\frac{\partial^2 f}{\partial z^2} 2f=ρ1ρ(ρρf)+ρ21φ22f+z22f

3、球坐标系

球坐标系是一种利用球坐标 ( r , θ , φ ) (r, \theta,\varphi) (r,θ,φ)表示一个点 p p p 在三维空间的位置的三维正交坐标系。原点到 p p p 点的距离 r r r,原点到点 p p p 的连线与正 z z z轴之间的天顶角 θ \theta θ,以及原点到点 p p p的连线在 x y xy xy平面的投影线,与正 x x x轴之间的方位角 φ \varphi φ
三种常用正交坐标系下的梯度、散度与旋度_第2张图片

球坐标系下三个正交单位矢量为
r ^ \bm{\hat{r}} r^:由原点指向 p p p
φ ^ \bm{\hat{\varphi}} φ^:沿逆时针方向,平行于 x y xy xy平面,并与 r ^ \bm{\hat{r}} r^ 垂直
θ ^ \bm{\hat{\theta}} θ^ φ ^ × r ^ \bm{\hat{\varphi}} \times \bm{\hat{r}} φ^×r^的方向

球坐标系与空间直角坐标系的转换关系为
x = r sin ⁡ θ cos ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ θ x=r \sin \theta \cos \varphi \\ y=r \sin \theta \sin \varphi \\ z=r \cos \theta x=rsinθcosφy=rsinθsinφz=rcosθ

  • 梯度
    ∇ f = r ^ ∂ f ∂ r + θ ^ 1 r ∂ f ∂ θ + φ ^ 1 r sin ⁡ θ ∂ f ∂ φ \bm{\nabla}f=\bm{\hat{r}} \frac{\partial f}{\partial r} + \bm{\hat{\theta}} \frac{1}{r}\frac{\partial f}{\partial \theta}+ \bm{\hat{\varphi}} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} f=r^rf+θ^r1θf+φ^rsinθ1φf

  • 散度
    ∇ ⋅ F = 1 r 2 ∂ ∂ r ( r 2 F r ) + 1 r sin ⁡ θ ∂ ∂ θ ( F θ sin ⁡ θ ) + 1 r sin ⁡ θ ∂ F φ ∂ φ \bm{\nabla \cdot} \bm{F}=\frac{1}{r^2}\frac{\partial }{\partial r}(r^2F_r)+ \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(F_\theta \sin \theta) + \frac{1}{r\sin \theta}\frac{\partial F_\varphi}{\partial \varphi} F=r21r(r2Fr)+rsinθ1θ(Fθsinθ)+rsinθ1φFφ

  • 旋度
    ∇ × F = 1 r sin ⁡ θ ∣ r ^ r θ ^ r sin ⁡ θ φ ^ ∂ ∂ r ∂ ∂ θ ∂ ∂ φ F r r F θ r sin ⁡ θ F φ ∣ \bm{\nabla}\times \bm{F}=\frac{1}{r\sin \theta} \begin{vmatrix} \bm{\hat{r}} & r\bm{\hat{\theta}} & r\sin\theta \bm{\hat{\varphi}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ F_r & rF_\theta & r\sin\theta F_\varphi \end{vmatrix} ×F=rsinθ1r^rFrrθ^θrFθrsinθφ^φrsinθFφ

注:图片来源于百度百科。

你可能感兴趣的:(微积分与微分方程)