【linux驱动】USB子系统分析

本文针对Linux内核下USB子系统进行分析,主要会涉及一下几个方面:

  • USB基础知识:介绍USB设备相关的基础知识

  • Linux USB子系统分析:分析USB系统框架,USB HCD/ROOT HUB注册过程,USB新设备枚举过程

  • USB设备驱动案例:介绍常用的USB相关设备驱动

  • USB电源管理

一、USB基础知识

USB,是英文Universal Serial Bus(通用串行总线)、支持设备的即插即用和热插拔功能。在1994年底由英特尔、IBM、Microsoft等公司联合提出的,在此之前PC的接口杂乱,扩展能力差,热拔插不支持等。USB正是为了解决速度,扩展能力,易用性等而出现。

USB各版本速率对比

USB版本 理论最大传输速率 速率称号 最大输出电流 推出时间
USB 1.0 1.5Mbps(192KB/s) 低速(Low-Speed) 5V/500mA 1996年1月
USB 1.1 12Mbps(1.5MB/s) 全速(Full-Speed) 5V/500mA 1998年9月
USB 2.0 480Mbps(60MB/s) 高速(High-Speed) 5V/500mA 2000年4月
USB 3.0 5Gbps(500MB/s) 超高速(Super-Speed) 5V/900mA 2008年11月
USB 3.1 10Gbps(1280MB/s) 超高速+(Super-speed+) 20V/5A 2013年12月
USB 4.0 40Gbps     协议(2019年9月)

  Linux 5.6将开始支持 USB 4 。

1.1 USB主从结构:通信都是主机端先发起通信

【linux驱动】USB子系统分析_第1张图片

从设备端没有主动通知USB主机端的能力,从机插入后,主机控制器根据协议,获取设备描述符及驱动匹配。

【linux驱动】USB子系统分析_第2张图片

1.2 USB描述符

【linux驱动】USB子系统分析_第3张图片

定义路径:kernel\include\uapi\linux\usb\ch9.h

设备描述符

/* USB_DT_DEVICE: Device descriptor */
struct usb_device_descriptor {
	__u8  bLength; //本结构体大小
	__u8  bDescriptorType; //描述符类型

	__le16 bcdUSB; //usb版本号 200->USB2.0
	__u8  bDeviceClass; //设备类 
	__u8  bDeviceSubClass; //设备类子类
	__u8  bDeviceProtocol; //设备协议,以上三点都是USB官方定义
	__u8  bMaxPacketSize0; //端点0最大包大小
	__le16 idVendor; //厂家id
	__le16 idProduct; //产品id
	__le16 bcdDevice; //设备出厂编号
	__u8  iManufacturer; //设备厂商字符串索引
	__u8  iProduct; //产品描述
	__u8  iSerialNumber; //设备序列号字符串索引 
	__u8  bNumConfigurations; //配置的个数
} __attribute__ ((packed));

配置描述符

struct usb_config_descriptor {
	__u8  bLength; //自身长度
	__u8  bDescriptorType;//描述符类型(本结构体中固定为0x02)  

	__le16 wTotalLength; //该配置下,信息的总长度
	__u8  bNumInterfaces; //接口的个数
	__u8  bConfigurationValue; //Set_Configuration命令所需要的参数值
	__u8  iConfiguration; //描述该配置的字符串的索引值 
	__u8  bmAttributes;//供电模式的选择  
	__u8  bMaxPower;//设备从总线提取的最大电流
} __attribute__ ((packed));

接口描述符

struct usb_interface_descriptor {
	__u8  bLength;
	__u8  bDescriptorType;//接口描述符的类型编号(0x04)

	__u8  bInterfaceNumber;  //该接口的编号  
	__u8  bAlternateSetting; //备用的接口描述符编号  
	__u8  bNumEndpoints; //该接口使用的端点数,不包括端点0  
	__u8  bInterfaceClass; //接口类
	__u8  bInterfaceSubClass; //子类
	__u8  bInterfaceProtocol; //协议
	__u8  iInterface;//描述该接口的字符串索引值  
} __attribute__ ((packed));

端点描述符

/* USB_DT_ENDPOINT: Endpoint descriptor */
struct usb_endpoint_descriptor {
	__u8  bLength;//端点描述符字节数大小(7个字节)
	__u8  bDescriptorType;//端点描述符类型编号(0x05) 

	__u8  bEndpointAddress; //端点地址及输入输出属性 
	__u8  bmAttributes; //属性,包含端点的传输类型,控制,中断...
	__le16 wMaxPacketSize;  //端点收、发的最大包大小
	__u8  bInterval; //主机查询端点的时间间隔

	/* NOTE:  these two are _only_ in audio endpoints. */
	/* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */
	__u8  bRefresh;
	__u8  bSynchAddress;
} __attribute__ ((packed));

 

https://www.cnblogs.com/myblesh/archive/2014/04/01/3637767.html

https://www.cnblogs.com/wangh0802PositiveANDupward/archive/2013/05/06/3061241.html

https://blog.csdn.net/michaelcao1980/article/details/51280736

 

 

 

1.3 USB传输:四种类型

  • 控制传输:用于配置设备、获取设备信息、发送命令或者获取设备的状态报告,如:USB枚举阶段。
  • 批量传输:
  • 中断传输
  • 实时传输

1.4 USB传输对象:端点

  • 从端点接收和发送数据
  • 每个端点都只有一个传输类型:控制,批量...
  • 每个端点都只有一个传输方向:输入or输出 。端点0除外,端点0为双向(查询描述符,设置描述符)。
  • 传输方向基于主机端而言,数据由从到主,则该端点为输入端点
  •  

二、Linux USB子系统分析

Linux内核USB子系统,以总线(Bus)、设备(device)、驱动(device_driver)模型来完成设备驱动的绑定,实现USB业务逻辑。

本节在Linux USB驱动框架的基础上,分析USB子系统在内核中的整个初始化流程,以及内核对USB hub的监测及USB设备插入后的一系列初始化和驱动的匹配过程分析,从而分析USB业务实现的主要流程。

2.1 USB子系统框架

【linux驱动】USB子系统分析_第4张图片

整个USB驱动模型可以总结为如上图,USB分为主机测设备侧。本文重点分析主机测一端的USB驱动。

从主机HOST测来看,其包含:

  • USB设备驱动(RNDIS,HID,Mass Storagr...)

  • USB核心(Core init,Core API...)

  • USB主机控制器驱动HCD(Root Hub)

USB设备驱动:用于和枚举到的USB设备进行绑定,完成特定的功能。

USB Core:用于内核USB总线的初始化及USB相关API,为设备驱动和HCD的交互提供桥梁。

USB主机控制器HCD:完成主机控制器的初始化以及数据的传输,并监测外部设备插入,完成设备枚举。

接下来将从以上三个方面分析USB子系统在内核完成的初始化操作及USB业务实现的流程。

2.2 USB Core分析

Linux启动阶段,通过subsys_initcall会完成USB Core的加载,其代码位于kernel/drivers/usb/core/usb.c。

顺着驱动加载的入口函数,来分析USB被加载进内核的第一步。

2.2.1 入口函数usb_init分析

【linux驱动】USB子系统分析_第5张图片

由于USB基于总线设备驱动模型来组织,其初始化阶段一个重点任务为完成USB总线的创建,usb_init代码如下:

static int __init usb_init(void)
{
	int retval;
        //通过command line传入nousb=1可禁止掉USB子模块的加载
	if (nousb) {
		pr_info("%s: USB support disabled\n", usbcore_name);
		return 0;
	}

	retval = usb_debugfs_init();
	if (retval)
		goto out;

	usb_acpi_register();
        //注册USB总线(*****)
	retval = bus_register(&usb_bus_type);
	if (retval)
		goto bus_register_failed;
	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
	if (retval)
		goto bus_notifier_failed;
	retval = usb_major_init();
	if (retval)
		goto major_init_failed;
	retval = usb_register(&usbfs_driver);
	if (retval)
		goto driver_register_failed;
	retval = usb_devio_init();
	if (retval)
		goto usb_devio_init_failed;
        //usb hub的初始化,完成驱动注册和内核线程创建
	retval = usb_hub_init();
	if (retval)
		goto hub_init_failed;
        //加载一个通用的usb_device_driver驱动
	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
	if (!retval)
		goto out;
        ......
}

usb_init主要完成USB相关的初始化操作,其重点工作:

  • 通过bus_register注册USB总线usb_bus_type

struct bus_type usb_bus_type = {
	.name =		"usb",
	.match =	usb_device_match,
	.uevent =	usb_uevent,
};

bus_register中创建了两个链表,一端为设备链表,一端为驱动链表。

klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
klist_init(&priv->klist_drivers, NULL, NULL);

usb_bus_type提供了设备与驱动的匹配函数usb_device_match,这个函数很重要,后面用到的时候再详细分析。

  • 完成USB Hub的初始化usb_hub_init()

int usb_hub_init(void)
{
	if (usb_register(&hub_driver) < 0) {
		printk(KERN_ERR "%s: can't register hub driver\n",
			usbcore_name);
		return -1;
	}

	khubd_task = kthread_run(hub_thread, NULL, "khubd");
	if (!IS_ERR(khubd_task))
		return 0;

	/* Fall through if kernel_thread failed */
	usb_deregister(&hub_driver);
	printk(KERN_ERR "%s: can't start khubd\n", usbcore_name);

	return -1;
}

任务之1:是通过usb_register(&hub_driver),向USB总线添加一个hub驱动。指定了probe,disconnect,suspend,resume,id_table等相关函数。可以猜测,在root hub创建后,会执行此处的hub_probe函数。

任务之2:完成内核线程hub_thread的创建,该线程是检测USB端口插入设备后的处理函数,是完成USB设备识别到枚举的监控进程,十分重要。

static int hub_thread(void *__unused)
{
	/* khubd needs to be freezable to avoid intefering with USB-PERSIST
	 * port handover.  Otherwise it might see that a full-speed device
	 * was gone before the EHCI controller had handed its port over to
	 * the companion full-speed controller.
	 */
	set_freezable();

	do {
		hub_events();
		wait_event_freezable(khubd_wait,
				!list_empty(&hub_event_list) ||
				kthread_should_stop());
	} while (!kthread_should_stop() || !list_empty(&hub_event_list));

	pr_debug("%s: khubd exiting\n", usbcore_name);
	return 0;
}

hub_events()是一个死循环,其任务是解析hub_event_list,来一个一个处理发生在hub上的事件,比如插入,拔出。当hub_event_list事件被处理完后,break跳出while,通过wait_event_freezable使进程进入休眠态。一旦hub_event_list上有新事件需要处理,此处khubd_wait会在事件中断中被唤醒,重新执行到此处的hub_events()来遍历执行事件,完成处理。

hub_events()十分庞大,且十分重要,后面分析到此处流程的时候再详细分析。

  • usb_register_device_driver完成一个usb_device_driver usb_generic_driver的注册

区别于usb_register函数,usb_register_device_driver完成一个device的注册,既然是一个device的驱动,那么在USB枚举之后,创建一个USB设备后,这个驱动就会被probe。

2.2.2 USB Core重点函数及数据结构

  • usb_register() 注册一个USB接口驱动

usb_register是一个宏,展开后:

#define usb_register(driver)  usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
/**
 * usb_register_driver - register a USB interface driver
 * @new_driver: USB operations for the interface driver
 *
 * Registers a USB interface driver with the USB core.  The list of
 * unattached interfaces will be rescanned whenever a new driver is
 * added, allowing the new driver to attach to any recognized interfaces.
 * Returns a negative error code on failure and 0 on success.
 *
 * NOTE: if you want your driver to use the USB major number, you must call
 * usb_register_dev() to enable that functionality.  This function no longer
 * takes care of that.
 */
int usb_register_driver(struct usb_driver *new_driver, struct module *owner,
			const char *mod_name)
{
        ...
	new_driver->drvwrap.for_devices = 0;
	new_driver->drvwrap.driver.name = (char *) new_driver->name;
	new_driver->drvwrap.driver.bus = &usb_bus_type;
	new_driver->drvwrap.driver.probe = usb_probe_interface;
	new_driver->drvwrap.driver.remove = usb_unbind_interface;
        ...
	retval = driver_register(&new_driver->drvwrap.driver);

	retval = usb_create_newid_files(new_driver);

	pr_info("%s: registered new interface driver %s\n",
			usbcore_name, new_driver->name);
}
  • int usb_register_device_driver(struct usb_device_driver *new_udriver, struct module *owner):注册USB设备驱动

/**
 * usb_register_device_driver - register a USB device (not interface) driver
 * @new_udriver: USB operations for the device driver
 *
 * Registers a USB device driver with the USB core.  The list of
 * unattached devices will be rescanned whenever a new driver is
 * added, allowing the new driver to attach to any recognized devices.
 * Returns a negative error code on failure and 0 on success.
 */
int usb_register_device_driver(struct usb_device_driver *new_udriver,
		struct module *owner)
{
        ...
	new_udriver->drvwrap.for_devices = 1;
	new_udriver->drvwrap.driver.name = (char *) new_udriver->name;
	new_udriver->drvwrap.driver.bus = &usb_bus_type;
	new_udriver->drvwrap.driver.probe = usb_probe_device;
	new_udriver->drvwrap.driver.remove = usb_unbind_device;

	retval = driver_register(&new_udriver->drvwrap.driver);

	if (!retval)
		pr_info("%s: registered new device driver %s\n",
			usbcore_name, new_udriver->name);
        ...
}

对比两个驱动注册函数,一个为注册USB 接口驱动,一个为注册USB设备驱动,一个设备可以有多个接口,设备和接口的驱动在内核是有所区别的,他们都挂在usb_bus_type下,设备驱动的for_devices变量被置1,这个变量在总线的match函数usb_device_match的时候会用于判断是什么类型的驱动。且usb_device_match对接口和设备驱动进行了判断,走了不通的match分支。

由于总线的match函数通过for_devices进行匹配,可以猜测内核针对的USB设备驱动仅有usb_generic_driver一个,且USB枚举后产生的所有设备,都将被此驱动所probe。

  • struct usb_driver:USB接口驱动结构体

struct usb_driver {
	const char *name;

	int (*probe) (struct usb_interface *intf,
		      const struct usb_device_id *id);

	void (*disconnect) (struct usb_interface *intf);

	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
			void *buf);

	int (*suspend) (struct usb_interface *intf, pm_message_t message);
	int (*resume) (struct usb_interface *intf);
	int (*reset_resume)(struct usb_interface *intf);

	int (*pre_reset)(struct usb_interface *intf);
	int (*post_reset)(struct usb_interface *intf);

	const struct usb_device_id *id_table;

	struct usb_dynids dynids;
	struct usbdrv_wrap drvwrap;
	unsigned int no_dynamic_id:1;
	unsigned int supports_autosuspend:1;
	unsigned int disable_hub_initiated_lpm:1;
	unsigned int soft_unbind:1;
};

USB分为:USB设备驱动,USB Core和HCD。在编写USB设备驱动的时候,一定也会向Core一样调用usb_register来向USB总线注册USB接口驱动。此时就需要实现一个usb_driver结构体,并填充里面重要的函数。

如上比较重要的成员,如probe匹配、id_table匹配的id表、supports_autosuspend休眠,对接设备驱动模型的drvwrap结构体等。

2.2.3 总结

可以将USB口的入口函数任务总结为如下:

  • 创建并初始化了USB总线,usb_bus_type,提供了总线的匹配函数

  • 向总线注册hub的驱动,并启动了内核线程hub_thread监控hub事件。

  • 向总线注册USB设备驱动usb_generic_driver,用于USB设备插入后的设备驱动枚举。

 

2.3 USB主机控制器驱动分析

分析主机控制器驱动前,首先来看一个USB2.0协议 5.2.3 Physical Bus Topology 内的USB物理总线拓扑图。

(译:如下图)USB上的设备通过分层星形拓扑物理连接到主机,如中所示图5-5。USB连接点由一种特殊的USB设备(称为集线器hub)提供。这个集线器提供的附加连接点称为端口port。主机包括一个名为根集线器。主机通过根集线器提供一个或多个连接点。

【linux驱动】USB子系统分析_第6张图片

从协议中可以看到,控制器上绑定了一个特殊的USB设备,称为root hub,根集线器提供的连接点称为port。所以可以总结出HCD需要完成的任务:

  • 完成控制器硬件的初始化,使得USB PHY工作在主状态下。

  • 从软件上构造出控制器结构体,并提供控制器驱动的操作函数,用于数据交互等。

  • 既然root hub是一个USB设备,对于驱动中,一定需要创建一个USB设备来表示这个root hub

  • 外部设备插在root hub上,软件需要完成对root hub的监控,以及USB设备插入后的创建操作。

2.3.1 HCD入口函数分析

CPU一般在内部集成USB,可选的HCD也比较多,比如dwc2、dwc3、chipidea的等等,均在kernel/drivers/usb/目下可以找到其对应的目录。本文以dwc2为例,代码位置: kernel/drivers/usb/dwc2/core.c。

【linux驱动】USB子系统分析_第7张图片

HCD控制器驱动一般以platform的形式将驱动注册进内核,本文HCD的入口函数中注册了两个platform_driver,并在板级代码中提供了platform_device。

本文将HCD控制器驱动可以从整体上分为两个大部分:

  1. 平台相关的硬件初始化

  2. 内核通用的USB HCD软件初始化流程

  • 平台硬件相关初始化

第一部分:平台相关的硬件初始化,主要完成硬件相关初始化,devm_clk_get/clk_enable申请并使能时钟,phy_init对USB PHY寄存器进行初始化设置,devm_request_threaded_irq申请id引脚中断等。是与硬件相关的初始化。在完成平台硬件的初始化后,在probe的末尾部分,调用了dwc2_host_init()函数。

将dwc2_host_init()看做HCD驱动第二部分,其主要完成HCD控制器的创建注册以及ROOT HUB的注册和HUB的监测。由于内核该部分调用关系比较多,本文将第二部分分为多个层次,从dwc2_host_init()开始。

  • 第一层:dwc2_host_init(dwc)

从最顶层名字上说明了整个代码最终是为了完成host控制器的初始化。在上面,我们知道主机控制器上绑定了一个ROOT HUB。

int dwc2_host_init(struct dwc2 *dwc) {
	struct usb_hcd *hcd;
	int ret;

        ...
	hcd = usb_create_hcd(&dwc2_hc_driver, dwc->dev, dev_name(dwc->dev));

	dev_set_drvdata(dwc->dev, dwc);

	*(struct dwc2 **)(hcd->hcd_priv) = dwc;
	dwc->hcd = hcd;

	ret = usb_add_hcd(hcd, -1, 0);

	    ...
}

dwc2_host_init 主要调用了两个函数usb_create_hcd和usb_add_hcd

① usb_create_hcd(&dwc2_hc_driver, dwc->dev, dev_name(dwc->dev));

struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
		struct device *dev, const char *bus_name)
{
	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
}
/**
 * usb_create_shared_hcd - create and initialize an HCD structure
 * @driver: HC driver that will use this hcd
 * @dev: device for this HC, stored in hcd->self.controller
 * @bus_name: value to store in hcd->self.bus_name
 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
 *              PCI device.  Only allocate certain resources for the primary HCD
 * Context: !in_interrupt()
 *
 * Allocate a struct usb_hcd, with extra space at the end for the
 * HC driver's private data.  Initialize the generic members of the
 * hcd structure.
 *
 * If memory is unavailable, returns NULL.
 */
struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
		struct device *dev, const char *bus_name,
		struct usb_hcd *primary_hcd)
{
	struct usb_hcd *hcd;

	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
        ...
	usb_bus_init(&hcd->self);
	hcd->self.controller = dev;
	hcd->self.bus_name = bus_name;
	hcd->self.uses_dma = (dev->dma_mask != NULL);

	init_timer(&hcd->rh_timer);
	hcd->rh_timer.function = rh_timer_func;
	hcd->rh_timer.data = (unsigned long) hcd;
#ifdef CONFIG_PM_RUNTIME
	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
#endif

	hcd->driver = driver;
        ...
}

根据注释该函数主要任务是创建并初始化一个HCD 结构体usb_hcd ,该函数主要实现:

  1. 完成usb_hcd内存申请

  2. usb_bus总线初始化,usb_bus_init(&hcd->self);

  3. 填充控制器驱动hc_driver。

usb_hcd的第一个成员是:struct usb_bus        self;        /* hcd is-a bus */。

一个主控制器对应一条usb总线,一个主控制器绑定着一个root hub,一个root hub对应于一个usb_device,然后注册此root  hub。

每个usb设备(usb_device)有一种或多种配置,每种配置有一个或多个接口,一个接口有一种或多种设置,一种设置有一个或多个端点。

hcd->driver = driver;中的driver=&dwc2_hc_driver(struct hc_driver)是主机控制器驱动函数,实现了通过主机控制器硬件向外通信的方法。类似于网卡设备驱动里面的net_device_ops结构体。后面用到再具体分析hc_driver。

② usb_add_hcd(hcd, -1, 0);

int usb_add_hcd(struct usb_hcd *hcd,
		unsigned int irqnum, unsigned long irqflags)
{
	int retval;
	struct usb_device *rhdev;

	if ((retval = usb_register_bus(&hcd->self)) < 0)
		goto err_register_bus;

	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
		dev_err(hcd->self.controller, "unable to allocate root hub\n");
		retval = -ENOMEM;
		goto err_allocate_root_hub;
	}
	hcd->self.root_hub = rhdev;

	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
		dev_err(hcd->self.controller, "can't setup\n");
		goto err_hcd_driver_setup;
	}

	hcd->state = HC_STATE_RUNNING;
	retval = hcd->driver->start(hcd);

	/* starting here, usbcore will pay attention to this root hub */
	retval = register_root_hub(hcd);
} 

将hcd添加到USB总线,该函数主要实现

  1. 注册usb_bus总线

  2. usb_alloc_dev申请一个usb_device,并赋给hcd->self.root_hub

  3. register_root_hub

上面我们根据协议知道主机控制器上会被绑定一个特殊的USB设备叫做root hub,在hcd注册完成后,为了实现正常的usb功能,此处应该还要实现一个root hub并绑定在hcd上。当完成usb_bus总线的注册后,此处调用usb_alloc_dev来创建一个USB设备,并将该设备指给了控制器的root hub,hcd->self.root_hub = rhdev;并调用register_root_hub注册到usb总线。

  • 第二层:register_root_hub()

/**
 * register_root_hub - called by usb_add_hcd() to register a root hub
 * @hcd: host controller for this root hub
 *
 * This function registers the root hub with the USB subsystem.  It sets up
 * the device properly in the device tree and then calls usb_new_device()
 * to register the usb device.  It also assigns the root hub's USB address
 * (always 1).
 */
static int register_root_hub(struct usb_hcd *hcd)
{
	struct device *parent_dev = hcd->self.controller;
	struct usb_device *usb_dev = hcd->self.root_hub;
	const int devnum = 1;
	int retval;

	usb_dev->devnum = devnum;
	usb_dev->bus->devnum_next = devnum + 1;
	
	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);

	mutex_lock(&usb_bus_list_lock);

	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);

	retval = usb_new_device (usb_dev);

	mutex_unlock(&usb_bus_list_lock);

	return retval;
}

usb_new_device创建一个usb设备并将其挂到usb_bus_type总线上,由于USB为总线设备驱动模型,在执行usb_new_device后,将执行总线的匹配函数如下。

usb_new_device->device_add->bus_probe_device->device_attach->bus_for_each_drv->__device_attach->driver_match_device->drv->bus->match(dev, drv)->usb_device_match

回顾USB2.0协议,这里确实是实现了一个绑定在控制器上的usb设备,并将其挂在USB总线上作为root hub来维护。

  • 第三层:设备与驱动的匹配

USB总线的匹配函数usb_device_match这时就需要被调用到了,其代码如下:

static int usb_device_match(struct device *dev, struct device_driver *drv)
{
	/* devices and interfaces are handled separately */
	if (is_usb_device(dev)) {

		/* interface drivers never match devices */
		if (!is_usb_device_driver(drv))
			return 0;

		/* TODO: Add real matching code */
		return 1;

	} else if (is_usb_interface(dev)) {
		struct usb_interface *intf;
		struct usb_driver *usb_drv;
		const struct usb_device_id *id;

		/* device drivers never match interfaces */
		if (is_usb_device_driver(drv))
			return 0;

		intf = to_usb_interface(dev);
		usb_drv = to_usb_driver(drv);

		id = usb_match_id(intf, usb_drv->id_table);
		if (id)
			return 1;

		id = usb_match_dynamic_id(intf, usb_drv);
		if (id)
			return 1;
	}

	return 0;
}

2.2章节我们分析了usb_register来注册一个usb接口驱动,usb_register_device_driver来注册一个usb设备驱动。同样在match函数里面也针对usb接口和设备进行了区分,形成了if else两个分支。

① USB设备&USB设备驱动 

is_usb_device(dev)

static inline int is_usb_device(const struct device *dev)
{
	return dev->type == &usb_device_type;
}

usb_alloc_dev在创建usb hub的时候,其内部指定了dev->dev.type = &usb_device_type;

is_usb_device_driver(drv)

static inline int is_usb_device_driver(struct device_driver *drv)
{
	return container_of(drv, struct usbdrv_wrap, driver)->
			for_devices;
}

回顾分析usb core入口函数,当时注册了一个usb设备驱动usb_generic_driver,其for_devices为1.此时显然root hub设备与usb_generic_driver驱动匹配成功,因此usb_generic_driver的generic_probe函数被调用。

① USB接口&USB接口驱动 

 

我们继续分析usb root hub的注册,此时generic_probe被调用。

static int generic_probe(struct usb_device *udev)
{
	int err, c;

	/* Choose and set the configuration.  This registers the interfaces
	 * with the driver core and lets interface drivers bind to them.
	 */
	c = usb_choose_configuration(udev);
	err = usb_set_configuration(udev, c);
	/* USB device state == configured ... usable */
	usb_notify_add_device(udev);

	return 0;
}

其主要函数2个:usb_choose_configuration和usb_set_configuration,选择配置并设置配置。

  • 第四层:usb配置选择和设置

https://blog.csdn.net/duan_xiaosu/article/details/68487314

https://www.linuxidc.com/Linux/2012-07/66670p3.htm

在usb_set_configuration的尾部,会将每一个接口设备注册到内核中。

    for (i = 0; i < nintf; ++i) {
        struct usb_interface *intf = cp->interface[i];

        ret = device_add(&intf->dev);
        create_intf_ep_devs(intf);
    }

在执行device_add后导致总线的匹配函数usb_device_match再次被调用,这次由于是接口设备,设备类型为usb_if_device_type,那么匹配的一定是接口驱动,于是会执行usb_device_match的else分支,去匹配接口驱动。根据上面对usb_device_match的分析,此时在core注册的hub_driver的hub_probe函数被调用。

  • 第五层:hub_probe分析

static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
	struct usb_host_interface *desc;
	struct usb_endpoint_descriptor *endpoint;
	struct usb_device *hdev;
	struct usb_hub *hub;

        ...
        //分配usb_hub 结构体
	hub = kzalloc(sizeof(*hub), GFP_KERNEL);
        //填充结构体
	INIT_LIST_HEAD(&hub->event_list);
	hub->intfdev = &intf->dev;
	hub->hdev = hdev;

	usb_set_intfdata (intf, hub);
	intf->needs_remote_wakeup = 1;
        //配置hub
	if (hub_configure(hub, endpoint) >= 0)
		return 0;
}

申请usb_hub ,填充,调用hub_configure配置hub

static int hub_configure(struct usb_hub *hub,
	struct usb_endpoint_descriptor *endpoint)
{
	struct usb_hcd *hcd;
	struct usb_device *hdev = hub->hdev;
	struct device *hub_dev = hub->intfdev;
	u16 hubstatus, hubchange;

	hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);
        //获取HUB的描述符
	ret = get_hub_descriptor(hdev, hub->descriptor);

	hub->ports = kzalloc(hdev->maxchild * sizeof(struct usb_port *),
        //填充urb
	hub->urb = usb_alloc_urb(0, GFP_KERNEL);
        //初始化一个中断urb,回调函数为hub_irq
	usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq,
		hub, endpoint->bInterval);
        //激活hub
	hub_activate(hub, HUB_INIT);

}
  1. 填充hub的相关描述符信息

  2. 初始化一个urb中断,其回调函数为hub_irq

  3. 并激活hub

在当hub上存在事件的时候时候会触发hub_irq调用,hub_irq调用kick_khubd完成对hub_thread的唤醒,去执行hub_events。

/* completion function, fires on port status changes and various faults */
static void hub_irq(struct urb *urb)
{
	struct usb_hub *hub = urb->context;
	int status = urb->status;
	unsigned i;
	unsigned long bits;

	switch (status) {
	case -ENOENT:		/* synchronous unlink */
	case -ECONNRESET:	/* async unlink */
	case -ESHUTDOWN:	/* hardware going away */
		return;

	default:		/* presumably an error */
		/* Cause a hub reset after 10 consecutive errors */
		dev_dbg (hub->intfdev, "transfer --> %d\n", status);
		if ((++hub->nerrors < 10) || hub->error)
			goto resubmit;
		hub->error = status;
		/* FALL THROUGH */

	/* let khubd handle things */
	case 0:			/* we got data:  port status changed */
		bits = 0;
		for (i = 0; i < urb->actual_length; ++i)
			bits |= ((unsigned long) ((*hub->buffer)[i]))
					<< (i*8);
		hub->event_bits[0] = bits;
		break;
	}

	hub->nerrors = 0;

	/* Something happened, let khubd figure it out */
	kick_khubd(hub);

	if ((status = usb_submit_urb (hub->urb, GFP_ATOMIC)) != 0
			&& status != -ENODEV && status != -EPERM)
		dev_err (hub->intfdev, "resubmit --> %d\n", status);
}

 

static void kick_khubd(struct usb_hub *hub)
{
	unsigned long	flags;

	spin_lock_irqsave(&hub_event_lock, flags);
	if (!hub->disconnected && list_empty(&hub->event_list)) {
		list_add_tail(&hub->event_list, &hub_event_list);

		/* Suppress autosuspend until khubd runs */
		usb_autopm_get_interface_no_resume(
				to_usb_interface(hub->intfdev));
		wake_up(&khubd_wait);
	}
	spin_unlock_irqrestore(&hub_event_lock, flags);
}

usb协议:11.12.3 Port Change Information Processing 

 【linux驱动】USB子系统分析_第8张图片

  • 第六层 hub_events()事件处理

第五层,完成了root hub的初始化及相关hub监测的创建,当hub上存在新事件的时候,hub_events开始执行,进行hub事件处理。是hub功能最为核心的处理函数。

static void hub_events(void)
{
	struct list_head *tmp;
	struct usb_device *hdev;
	struct usb_interface *intf;
	struct usb_hub *hub;
	struct device *hub_dev;
	u16 hubstatus;
	u16 hubchange;
	u16 portstatus;
	u16 portchange;
	int i, ret;
	int connect_change, wakeup_change;

	/*
	 *  We restart the list every time to avoid a deadlock with
	 * deleting hubs downstream from this one. This should be
	 * safe since we delete the hub from the event list.
	 * Not the most efficient, but avoids deadlocks.
	 */
	while (1) {

		/* Grab the first entry at the beginning of the list */
		spin_lock_irq(&hub_event_lock);
		if (list_empty(&hub_event_list)) {
			spin_unlock_irq(&hub_event_lock);
			break;
		}

		tmp = hub_event_list.next;
		list_del_init(tmp);

		hub = list_entry(tmp, struct usb_hub, event_list);
		kref_get(&hub->kref);
		spin_unlock_irq(&hub_event_lock);

		hdev = hub->hdev;
		hub_dev = hub->intfdev;
		intf = to_usb_interface(hub_dev);
		dev_dbg(hub_dev, "state %d ports %d chg %04x evt %04x\n",
				hdev->state, hub->descriptor
					? hub->descriptor->bNbrPorts
					: 0,
				/* NOTE: expects max 15 ports... */
				(u16) hub->change_bits[0],
				(u16) hub->event_bits[0]);

		/* Lock the device, then check to see if we were
		 * disconnected while waiting for the lock to succeed. */
		usb_lock_device(hdev);
		if (unlikely(hub->disconnected))
			goto loop_disconnected;

		/* If the hub has died, clean up after it */
		if (hdev->state == USB_STATE_NOTATTACHED) {
			hub->error = -ENODEV;
			hub_quiesce(hub, HUB_DISCONNECT);
			goto loop;
		}

		/* Autoresume */
		ret = usb_autopm_get_interface(intf);
		if (ret) {
			dev_dbg(hub_dev, "Can't autoresume: %d\n", ret);
			goto loop;
		}

		/* If this is an inactive hub, do nothing */
		if (hub->quiescing)
			goto loop_autopm;

		if (hub->error) {
			dev_dbg (hub_dev, "resetting for error %d\n",
				hub->error);

			ret = usb_reset_device(hdev);
			if (ret) {
				dev_dbg (hub_dev,
					"error resetting hub: %d\n", ret);
				goto loop_autopm;
			}

			hub->nerrors = 0;
			hub->error = 0;
		}

		/* deal with port status changes */
		for (i = 1; i <= hub->descriptor->bNbrPorts; i++) {
			if (test_bit(i, hub->busy_bits))
				continue;
			connect_change = test_bit(i, hub->change_bits);
			wakeup_change = test_and_clear_bit(i, hub->wakeup_bits);
			if (!test_and_clear_bit(i, hub->event_bits) &&
					!connect_change && !wakeup_change)
				continue;

			ret = hub_port_status(hub, i,
					&portstatus, &portchange);
			if (ret < 0)
				continue;

			if (portchange & USB_PORT_STAT_C_CONNECTION) {
				usb_clear_port_feature(hdev, i,
					USB_PORT_FEAT_C_CONNECTION);
				connect_change = 1;
			}

			if (portchange & USB_PORT_STAT_C_ENABLE) {
				if (!connect_change)
					dev_dbg (hub_dev,
						"port %d enable change, "
						"status %08x\n",
						i, portstatus);
				usb_clear_port_feature(hdev, i,
					USB_PORT_FEAT_C_ENABLE);

				/*
				 * EM interference sometimes causes badly
				 * shielded USB devices to be shutdown by
				 * the hub, this hack enables them again.
				 * Works at least with mouse driver. 
				 */
				if (!(portstatus & USB_PORT_STAT_ENABLE)
				    && !connect_change
				    && hub->ports[i - 1]->child) {
					dev_err (hub_dev,
					    "port %i "
					    "disabled by hub (EMI?), "
					    "re-enabling...\n",
						i);
					connect_change = 1;
				}
			}

			if (hub_handle_remote_wakeup(hub, i,
						portstatus, portchange))
				connect_change = 1;

			if (portchange & USB_PORT_STAT_C_OVERCURRENT) {
				u16 status = 0;
				u16 unused;

				dev_dbg(hub_dev, "over-current change on port "
					"%d\n", i);
				usb_clear_port_feature(hdev, i,
					USB_PORT_FEAT_C_OVER_CURRENT);
				msleep(100);	/* Cool down */
				hub_power_on(hub, true);
				hub_port_status(hub, i, &status, &unused);
				if (status & USB_PORT_STAT_OVERCURRENT)
					dev_err(hub_dev, "over-current "
						"condition on port %d\n", i);
			}

			if (portchange & USB_PORT_STAT_C_RESET) {
				dev_dbg (hub_dev,
					"reset change on port %d\n",
					i);
				usb_clear_port_feature(hdev, i,
					USB_PORT_FEAT_C_RESET);
			}
			if ((portchange & USB_PORT_STAT_C_BH_RESET) &&
					hub_is_superspeed(hub->hdev)) {
				dev_dbg(hub_dev,
					"warm reset change on port %d\n",
					i);
				usb_clear_port_feature(hdev, i,
					USB_PORT_FEAT_C_BH_PORT_RESET);
			}
			if (portchange & USB_PORT_STAT_C_LINK_STATE) {
				usb_clear_port_feature(hub->hdev, i,
						USB_PORT_FEAT_C_PORT_LINK_STATE);
			}
			if (portchange & USB_PORT_STAT_C_CONFIG_ERROR) {
				dev_warn(hub_dev,
					"config error on port %d\n",
					i);
				usb_clear_port_feature(hub->hdev, i,
						USB_PORT_FEAT_C_PORT_CONFIG_ERROR);
			}

			/* Warm reset a USB3 protocol port if it's in
			 * SS.Inactive state.
			 */
			if (hub_port_warm_reset_required(hub, portstatus)) {
				int status;
				struct usb_device *udev =
					hub->ports[i - 1]->child;

				dev_dbg(hub_dev, "warm reset port %d\n", i);
				if (!udev || !(portstatus &
						USB_PORT_STAT_CONNECTION)) {
					status = hub_port_reset(hub, i,
							NULL, HUB_BH_RESET_TIME,
							true);
					if (status < 0)
						hub_port_disable(hub, i, 1);
				} else {
					usb_lock_device(udev);
					status = usb_reset_device(udev);
					usb_unlock_device(udev);
					connect_change = 0;
				}
			}

			if (connect_change)
				hub_port_connect_change(hub, i,
						portstatus, portchange);
		} /* end for i */

		/* deal with hub status changes */
		if (test_and_clear_bit(0, hub->event_bits) == 0)
			;	/* do nothing */
		else if (hub_hub_status(hub, &hubstatus, &hubchange) < 0)
			dev_err (hub_dev, "get_hub_status failed\n");
		else {
			if (hubchange & HUB_CHANGE_LOCAL_POWER) {
				dev_dbg (hub_dev, "power change\n");
				clear_hub_feature(hdev, C_HUB_LOCAL_POWER);
				if (hubstatus & HUB_STATUS_LOCAL_POWER)
					/* FIXME: Is this always true? */
					hub->limited_power = 1;
				else
					hub->limited_power = 0;
			}
			if (hubchange & HUB_CHANGE_OVERCURRENT) {
				u16 status = 0;
				u16 unused;

				dev_dbg(hub_dev, "over-current change\n");
				clear_hub_feature(hdev, C_HUB_OVER_CURRENT);
				msleep(500);	/* Cool down */
                        	hub_power_on(hub, true);
				hub_hub_status(hub, &status, &unused);
				if (status & HUB_STATUS_OVERCURRENT)
					dev_err(hub_dev, "over-current "
						"condition\n");
			}
		}

 loop_autopm:
		/* Balance the usb_autopm_get_interface() above */
		usb_autopm_put_interface_no_suspend(intf);
 loop:
		/* Balance the usb_autopm_get_interface_no_resume() in
		 * kick_khubd() and allow autosuspend.
		 */
		usb_autopm_put_interface(intf);
 loop_disconnected:
		usb_unlock_device(hdev);
		kref_put(&hub->kref, hub_release);

        } /* end while (1) */
}

hub_events主要任务:

  1. 调用hub_port_status获取hub上发生的时间

  2. 调用hub_port_connect_change去处理事件

/* Handle physical or logical connection change events.
 * This routine is called when:
 * 	a port connection-change occurs;
 *	a port enable-change occurs (often caused by EMI);
 *	usb_reset_and_verify_device() encounters changed descriptors (as from
 *		a firmware download)
 * caller already locked the hub
 */
static void hub_port_connect_change(struct usb_hub *hub, int port1,
					u16 portstatus, u16 portchange)
{
	struct usb_device *hdev = hub->hdev;
	struct device *hub_dev = hub->intfdev;
	struct usb_hcd *hcd = bus_to_hcd(hdev->bus);
	unsigned wHubCharacteristics =
			le16_to_cpu(hub->descriptor->wHubCharacteristics);
	struct usb_device *udev;
	int status, i;
	unsigned unit_load;

	dev_dbg (hub_dev,
		"port %d, status %04x, change %04x, %s\n",
		port1, portstatus, portchange, portspeed(hub, portstatus));

	if (hub->has_indicators) {
		set_port_led(hub, port1, HUB_LED_AUTO);
		hub->indicator[port1-1] = INDICATOR_AUTO;
	}

#ifdef	CONFIG_USB_OTG
	/* during HNP, don't repeat the debounce */
	if (hdev->bus->is_b_host)
		portchange &= ~(USB_PORT_STAT_C_CONNECTION |
				USB_PORT_STAT_C_ENABLE);
#endif

	/* Try to resuscitate an existing device */
	udev = hub->ports[port1 - 1]->child;
	if ((portstatus & USB_PORT_STAT_CONNECTION) && udev &&
			udev->state != USB_STATE_NOTATTACHED) {
		usb_lock_device(udev);
		if (portstatus & USB_PORT_STAT_ENABLE) {
			status = 0;		/* Nothing to do */

#ifdef CONFIG_PM_RUNTIME
		} else if (udev->state == USB_STATE_SUSPENDED &&
				udev->persist_enabled) {
			/* For a suspended device, treat this as a
			 * remote wakeup event.
			 */
			status = usb_remote_wakeup(udev);
#endif

		} else {
			status = -ENODEV;	/* Don't resuscitate */
		}
		usb_unlock_device(udev);

		if (status == 0) {
			clear_bit(port1, hub->change_bits);
			return;
		}
	}

	/* Disconnect any existing devices under this port */
	if (udev) {
		if (hcd->phy && !hdev->parent &&
				!(portstatus & USB_PORT_STAT_CONNECTION))
			usb_phy_notify_disconnect(hcd->phy, udev->speed);
		usb_disconnect(&hub->ports[port1 - 1]->child);
	}
	clear_bit(port1, hub->change_bits);

	/* We can forget about a "removed" device when there's a physical
	 * disconnect or the connect status changes.
	 */
	if (!(portstatus & USB_PORT_STAT_CONNECTION) ||
			(portchange & USB_PORT_STAT_C_CONNECTION))
		clear_bit(port1, hub->removed_bits);

	if (portchange & (USB_PORT_STAT_C_CONNECTION |
				USB_PORT_STAT_C_ENABLE)) {
		status = hub_port_debounce_be_stable(hub, port1);
		if (status < 0) {
			if (status != -ENODEV && printk_ratelimit())
				dev_err(hub_dev, "connect-debounce failed, "
						"port %d disabled\n", port1);
			portstatus &= ~USB_PORT_STAT_CONNECTION;
		} else {
			portstatus = status;
		}
	}

	/* Return now if debouncing failed or nothing is connected or
	 * the device was "removed".
	 */
	if (!(portstatus & USB_PORT_STAT_CONNECTION) ||
			test_bit(port1, hub->removed_bits)) {

		/* maybe switch power back on (e.g. root hub was reset) */
		if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2
				&& !port_is_power_on(hub, portstatus))
			set_port_feature(hdev, port1, USB_PORT_FEAT_POWER);

		if (portstatus & USB_PORT_STAT_ENABLE)
  			goto done;
		return;
	}
	if (hub_is_superspeed(hub->hdev))
		unit_load = 150;
	else
		unit_load = 100;

	status = 0;
	for (i = 0; i < SET_CONFIG_TRIES; i++) {

		/* reallocate for each attempt, since references
		 * to the previous one can escape in various ways
		 */
		udev = usb_alloc_dev(hdev, hdev->bus, port1);
		if (!udev) {
			dev_err (hub_dev,
				"couldn't allocate port %d usb_device\n",
				port1);
			goto done;
		}

		usb_set_device_state(udev, USB_STATE_POWERED);
 		udev->bus_mA = hub->mA_per_port;
		udev->level = hdev->level + 1;
		udev->wusb = hub_is_wusb(hub);

		/* Only USB 3.0 devices are connected to SuperSpeed hubs. */
		if (hub_is_superspeed(hub->hdev))
			udev->speed = USB_SPEED_SUPER;
		else
			udev->speed = USB_SPEED_UNKNOWN;

            //选择设备号0.1.2...
		choose_devnum(udev);
		if (udev->devnum <= 0) {
			status = -ENOTCONN;	/* Don't retry */
			goto loop;
		}

		/* reset (non-USB 3.0 devices) and get descriptor */
		status = hub_port_init(hub, udev, port1, i);
		if (status < 0)
			goto loop;

		usb_detect_quirks(udev);
		if (udev->quirks & USB_QUIRK_DELAY_INIT)
			msleep(1000);

		/* consecutive bus-powered hubs aren't reliable; they can
		 * violate the voltage drop budget.  if the new child has
		 * a "powered" LED, users should notice we didn't enable it
		 * (without reading syslog), even without per-port LEDs
		 * on the parent.
		 */
		if (udev->descriptor.bDeviceClass == USB_CLASS_HUB
				&& udev->bus_mA <= unit_load) {
			u16	devstat;

			status = usb_get_status(udev, USB_RECIP_DEVICE, 0,
					&devstat);
			if (status < 2) {
				dev_dbg(&udev->dev, "get status %d ?\n", status);
				goto loop_disable;
			}
			le16_to_cpus(&devstat);
			if ((devstat & (1 << USB_DEVICE_SELF_POWERED)) == 0) {
				dev_err(&udev->dev,
					"can't connect bus-powered hub "
					"to this port\n");
				if (hub->has_indicators) {
					hub->indicator[port1-1] =
						INDICATOR_AMBER_BLINK;
					schedule_delayed_work (&hub->leds, 0);
				}
				status = -ENOTCONN;	/* Don't retry */
				goto loop_disable;
			}
		}
 
		/* check for devices running slower than they could */
		if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0200
				&& udev->speed == USB_SPEED_FULL
				&& highspeed_hubs != 0)
			check_highspeed (hub, udev, port1);

		/* Store the parent's children[] pointer.  At this point
		 * udev becomes globally accessible, although presumably
		 * no one will look at it until hdev is unlocked.
		 */
		status = 0;

		/* We mustn't add new devices if the parent hub has
		 * been disconnected; we would race with the
		 * recursively_mark_NOTATTACHED() routine.
		 */
		spin_lock_irq(&device_state_lock);
		if (hdev->state == USB_STATE_NOTATTACHED)
			status = -ENOTCONN;
		else
			hub->ports[port1 - 1]->child = udev;
		spin_unlock_irq(&device_state_lock);

		/* Run it through the hoops (find a driver, etc) */
		if (!status) {
			status = usb_new_device(udev);
			if (status) {
				spin_lock_irq(&device_state_lock);
				hub->ports[port1 - 1]->child = NULL;
				spin_unlock_irq(&device_state_lock);
			}
		}

		if (status)
			goto loop_disable;

		status = hub_power_remaining(hub);
		if (status)
			dev_dbg(hub_dev, "%dmA power budget left\n", status);

		return;

loop_disable:
		hub_port_disable(hub, port1, 1);
loop:
		usb_ep0_reinit(udev);
		release_devnum(udev);
		hub_free_dev(udev);
		usb_put_dev(udev);
		if ((status == -ENOTCONN) || (status == -ENOTSUPP))
			break;
	}
	if (hub->hdev->parent ||
			!hcd->driver->port_handed_over ||
			!(hcd->driver->port_handed_over)(hcd, port1)) {
		if (status != -ENOTCONN && status != -ENODEV)
			dev_err(hub_dev, "unable to enumerate USB device on port %d\n",
					port1);
	}
 
done:
	hub_port_disable(hub, port1, 1);
	if (hcd->driver->relinquish_port && !hub->hdev->parent)
		hcd->driver->relinquish_port(hcd, port1);
}

hub_port_connect_change主要任务

  1. 判断发生的事件的类型

  2. 若有新设备插入,则创建一个usb设备,并完成设备的信息获取和初始化。

USB协议 9.1 USB设备状态

【linux驱动】USB子系统分析_第9张图片

usb_alloc_dev
    dev->state = USB_STATE_ATTACHED;

 

第七层 USB设备与驱动的枚举

 

 

 

 

2.3.2 HCD重点函数及结构体

/*-------------------------------------------------------------------------*/

/*
 * USB Host Controller Driver (usb_hcd) framework
 *
 * Since "struct usb_bus" is so thin, you can't share much code in it.
 * This framework is a layer over that, and should be more sharable.
 *
 * @authorized_default: Specifies if new devices are authorized to
 *                      connect by default or they require explicit
 *                      user space authorization; this bit is settable
 *                      through /sys/class/usb_host/X/authorized_default.
 *                      For the rest is RO, so we don't lock to r/w it.
 */

/*-------------------------------------------------------------------------*/

struct usb_hcd {

	/*
	 * housekeeping
	 */
	struct usb_bus		self;		/* hcd is-a bus */
	struct kref		kref;		/* reference counter */

	const char		*product_desc;	/* product/vendor string */
	int			speed;		/* Speed for this roothub.
						 * May be different from
						 * hcd->driver->flags & HCD_MASK
						 */
	char			irq_descr[24];	/* driver + bus # */

	struct timer_list	rh_timer;	/* drives root-hub polling */
	struct urb		*status_urb;	/* the current status urb */
#ifdef CONFIG_PM_RUNTIME
	struct work_struct	wakeup_work;	/* for remote wakeup */
#endif

	/*
	 * hardware info/state
	 */
	const struct hc_driver	*driver;	/* hw-specific hooks */

	/*
	 * OTG and some Host controllers need software interaction with phys;
	 * other external phys should be software-transparent
	 */
	struct usb_phy	*phy;

	/* Flags that need to be manipulated atomically because they can
	 * change while the host controller is running.  Always use
	 * set_bit() or clear_bit() to change their values.
	 */
	unsigned long		flags;
#define HCD_FLAG_HW_ACCESSIBLE		0	/* at full power */
#define HCD_FLAG_POLL_RH		2	/* poll for rh status? */
#define HCD_FLAG_POLL_PENDING		3	/* status has changed? */
#define HCD_FLAG_WAKEUP_PENDING		4	/* root hub is resuming? */
#define HCD_FLAG_RH_RUNNING		5	/* root hub is running? */
#define HCD_FLAG_DEAD			6	/* controller has died? */

	/* The flags can be tested using these macros; they are likely to
	 * be slightly faster than test_bit().
	 */
#define HCD_HW_ACCESSIBLE(hcd)	((hcd)->flags & (1U << HCD_FLAG_HW_ACCESSIBLE))
#define HCD_POLL_RH(hcd)	((hcd)->flags & (1U << HCD_FLAG_POLL_RH))
#define HCD_POLL_PENDING(hcd)	((hcd)->flags & (1U << HCD_FLAG_POLL_PENDING))
#define HCD_WAKEUP_PENDING(hcd)	((hcd)->flags & (1U << HCD_FLAG_WAKEUP_PENDING))
#define HCD_RH_RUNNING(hcd)	((hcd)->flags & (1U << HCD_FLAG_RH_RUNNING))
#define HCD_DEAD(hcd)		((hcd)->flags & (1U << HCD_FLAG_DEAD))

	/* Flags that get set only during HCD registration or removal. */
	unsigned		rh_registered:1;/* is root hub registered? */
	unsigned		rh_pollable:1;	/* may we poll the root hub? */
	unsigned		msix_enabled:1;	/* driver has MSI-X enabled? */

	/* The next flag is a stopgap, to be removed when all the HCDs
	 * support the new root-hub polling mechanism. */
	unsigned		uses_new_polling:1;
	unsigned		wireless:1;	/* Wireless USB HCD */
	unsigned		authorized_default:1;
	unsigned		has_tt:1;	/* Integrated TT in root hub */

	unsigned int		irq;		/* irq allocated */
	void __iomem		*regs;		/* device memory/io */
	resource_size_t		rsrc_start;	/* memory/io resource start */
	resource_size_t		rsrc_len;	/* memory/io resource length */
	unsigned		power_budget;	/* in mA, 0 = no limit */

	/* bandwidth_mutex should be taken before adding or removing
	 * any new bus bandwidth constraints:
	 *   1. Before adding a configuration for a new device.
	 *   2. Before removing the configuration to put the device into
	 *      the addressed state.
	 *   3. Before selecting a different configuration.
	 *   4. Before selecting an alternate interface setting.
	 *
	 * bandwidth_mutex should be dropped after a successful control message
	 * to the device, or resetting the bandwidth after a failed attempt.
	 */
	struct mutex		*bandwidth_mutex;
	struct usb_hcd		*shared_hcd;
	struct usb_hcd		*primary_hcd;


#define HCD_BUFFER_POOLS	4
	struct dma_pool		*pool[HCD_BUFFER_POOLS];

	int			state;
#	define	__ACTIVE		0x01
#	define	__SUSPEND		0x04
#	define	__TRANSIENT		0x80

#	define	HC_STATE_HALT		0
#	define	HC_STATE_RUNNING	(__ACTIVE)
#	define	HC_STATE_QUIESCING	(__SUSPEND|__TRANSIENT|__ACTIVE)
#	define	HC_STATE_RESUMING	(__SUSPEND|__TRANSIENT)
#	define	HC_STATE_SUSPENDED	(__SUSPEND)

#define	HC_IS_RUNNING(state) ((state) & __ACTIVE)
#define	HC_IS_SUSPENDED(state) ((state) & __SUSPEND)

	/* more shared queuing code would be good; it should support
	 * smarter scheduling, handle transaction translators, etc;
	 * input size of periodic table to an interrupt scheduler.
	 * (ohci 32, uhci 1024, ehci 256/512/1024).
	 */

	/* The HC driver's private data is stored at the end of
	 * this structure.
	 */
	unsigned long hcd_priv[0]
			__attribute__ ((aligned(sizeof(s64))));
};

2.3.3 总结

 

 

三、USB驱动分析

根据以上对内核USB子系统分析,此时可以来分析USB驱动的案例,加强对USB的理解。

分析HCD的过程中,在控制器上绑定的root hub就是一个usb device,HCD初始化过程完成了对这个USB设备的一系列初始化,并使用usb_fill_int_urb初始化了一个中断urb,使用usb_submit_urb 进行提交。

首先分析一个usb鼠标驱动,其和root hub的过程相似,也是中断传输。

3.1 Usb Mouse驱动

代码位置:kernel\drivers\hid\usbhid\usbmouse.c

https://www.cnblogs.com/EaIE099/p/5124512.html

#include 
#include 
#include 
#include 
#include 
#include 

/* for apple IDs */
#ifdef CONFIG_USB_HID_MODULE
#include "../hid-ids.h"
#endif

/*
 * Version Information
 */
#define DRIVER_VERSION "v1.6"
#define DRIVER_AUTHOR "Vojtech Pavlik "
#define DRIVER_DESC "USB HID Boot Protocol mouse driver"
#define DRIVER_LICENSE "GPL"

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE(DRIVER_LICENSE);

struct usb_mouse {
	char name[128];
	char phys[64];
	struct usb_device *usbdev;
	struct input_dev *dev;
	struct urb *irq;

	signed char *data;
	dma_addr_t data_dma;
};

static void usb_mouse_irq(struct urb *urb)
{
	struct usb_mouse *mouse = urb->context;
	signed char *data = mouse->data;
	struct input_dev *dev = mouse->dev;
	int status;

	switch (urb->status) {
	case 0:			/* success */
		break;
	case -ECONNRESET:	/* unlink */
	case -ENOENT:
	case -ESHUTDOWN:
		return;
	/* -EPIPE:  should clear the halt */
	default:		/* error */
		goto resubmit;
	}

	input_report_key(dev, BTN_LEFT,   data[0] & 0x01);
	input_report_key(dev, BTN_RIGHT,  data[0] & 0x02);
	input_report_key(dev, BTN_MIDDLE, data[0] & 0x04);
	input_report_key(dev, BTN_SIDE,   data[0] & 0x08);
	input_report_key(dev, BTN_EXTRA,  data[0] & 0x10);

	input_report_rel(dev, REL_X,     data[1]);
	input_report_rel(dev, REL_Y,     data[2]);
	input_report_rel(dev, REL_WHEEL, data[3]);

	input_sync(dev);
resubmit:
	status = usb_submit_urb (urb, GFP_ATOMIC);
	if (status)
		dev_err(&mouse->usbdev->dev,
			"can't resubmit intr, %s-%s/input0, status %d\n",
			mouse->usbdev->bus->bus_name,
			mouse->usbdev->devpath, status);
}

static int usb_mouse_open(struct input_dev *dev)
{
	struct usb_mouse *mouse = input_get_drvdata(dev);

	mouse->irq->dev = mouse->usbdev;
	if (usb_submit_urb(mouse->irq, GFP_KERNEL))
		return -EIO;

	return 0;
}

static void usb_mouse_close(struct input_dev *dev)
{
	struct usb_mouse *mouse = input_get_drvdata(dev);

	usb_kill_urb(mouse->irq);
}

static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;
	struct usb_mouse *mouse;
	struct input_dev *input_dev;
	int pipe, maxp;
	int error = -ENOMEM;

	interface = intf->cur_altsetting;

	if (interface->desc.bNumEndpoints != 1)
		return -ENODEV;

	endpoint = &interface->endpoint[0].desc;
	if (!usb_endpoint_is_int_in(endpoint))
		return -ENODEV;

	pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL);
	input_dev = input_allocate_device();
	if (!mouse || !input_dev)
		goto fail1;

	mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma);
	if (!mouse->data)
		goto fail1;

	mouse->irq = usb_alloc_urb(0, GFP_KERNEL);
	if (!mouse->irq)
		goto fail2;

	mouse->usbdev = dev;
	mouse->dev = input_dev;

	if (dev->manufacturer)
		strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name));

	if (dev->product) {
		if (dev->manufacturer)
			strlcat(mouse->name, " ", sizeof(mouse->name));
		strlcat(mouse->name, dev->product, sizeof(mouse->name));
	}

	if (!strlen(mouse->name))
		snprintf(mouse->name, sizeof(mouse->name),
			 "USB HIDBP Mouse %04x:%04x",
			 le16_to_cpu(dev->descriptor.idVendor),
			 le16_to_cpu(dev->descriptor.idProduct));

	usb_make_path(dev, mouse->phys, sizeof(mouse->phys));
	strlcat(mouse->phys, "/input0", sizeof(mouse->phys));

	input_dev->name = mouse->name;
	input_dev->phys = mouse->phys;
	usb_to_input_id(dev, &input_dev->id);
	input_dev->dev.parent = &intf->dev;

	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);
	input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
		BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE);
	input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);
	input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |
		BIT_MASK(BTN_EXTRA);
	input_dev->relbit[0] |= BIT_MASK(REL_WHEEL);

	input_set_drvdata(input_dev, mouse);

	input_dev->open = usb_mouse_open;
	input_dev->close = usb_mouse_close;

	usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,
			 (maxp > 8 ? 8 : maxp),
			 usb_mouse_irq, mouse, endpoint->bInterval);
	mouse->irq->transfer_dma = mouse->data_dma;
	mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

	error = input_register_device(mouse->dev);
	if (error)
		goto fail3;

	usb_set_intfdata(intf, mouse);
	return 0;

fail3:	
	usb_free_urb(mouse->irq);
fail2:	
	usb_free_coherent(dev, 8, mouse->data, mouse->data_dma);
fail1:	
	input_free_device(input_dev);
	kfree(mouse);
	return error;
}

static void usb_mouse_disconnect(struct usb_interface *intf)
{
	struct usb_mouse *mouse = usb_get_intfdata (intf);

	usb_set_intfdata(intf, NULL);
	if (mouse) {
		usb_kill_urb(mouse->irq);
		input_unregister_device(mouse->dev);
		usb_free_urb(mouse->irq);
		usb_free_coherent(interface_to_usbdev(intf), 8, mouse->data, mouse->data_dma);
		kfree(mouse);
	}
}

//用于驱动的匹配:
//match_flags 匹配哪些项,USB_DEVICE_ID_MATCH_INT_INFO:接口信息
//bInterfaceClass 、bInterfaceSubClass 、bInterfaceProtocol 所属的类,子类,及设备协议是否匹配
//#define USB_INTERFACE_INFO(cl, sc, pr) \
	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
	.bInterfaceClass = (cl), \
	.bInterfaceSubClass = (sc), \
	.bInterfaceProtocol = (pr)
static struct usb_device_id usb_mouse_id_table [] = {
	{ USB_INTERFACE_INFO(USB_INTERFACE_CLASS_HID, USB_INTERFACE_SUBCLASS_BOOT,
		USB_INTERFACE_PROTOCOL_MOUSE) },
	{ }	/* Terminating entry */
};

MODULE_DEVICE_TABLE (usb, usb_mouse_id_table);

static struct usb_driver usb_mouse_driver = {
	.name		= "usbmouse",
	.probe		= usb_mouse_probe,
	.disconnect	= usb_mouse_disconnect,
	.id_table	= usb_mouse_id_table,
};

module_usb_driver(usb_mouse_driver);

3.2 USB网卡

 

【linux驱动】USB子系统分析_第10张图片

USB设备信息

设备电源管理信息

参数1:autosuspend & autosuspend_delay_ms

运行时期休眠的超时时间,即但总线挂起设备后,多久之后设备开始进入休眠。

参数2:runtime_enabled & 

runtime_enabled :是否允许运行时期的休眠,状态有4中:disabled、forbidden、disabled & forbidden、enabled

disabled:dev->power.disable_depth

forbidden:dev->power.runtime_auto

runtime_status:当前状态

参数3:runtime_status 

当前设备状态有四种:suspended、suspending、resuming、active。见上图。

参数:runtime_usage:&dev->power.usage_count

参数:runtime_suspended_time & runtime_active_time

设备活跃时间和挂起的时间

https://blog.csdn.net/ll148305879/article/details/91578189

你可能感兴趣的:(【linux驱动】USB子系统分析)