mask_rcnn keras源码跟读1)模型搭建

基础知识:faster_rcnn相关内容,mask_rcnn相关内容
源码git:https://github.com/matterport/Mask_RCNN/tree/v2.1

1.模型搭建
主要在类MaskRCNN的build方法内(model.py_1822行)

1.1基础网络_resnet101网络

  # Build the shared convolutional layers.
        # Bottom-up Layers
        # Returns a list of the last layers of each stage, 5 in total.
        # Don't create the thead (stage 5), so we pick the 4th item in the list.
        _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
                                         stage5=True, train_bn=config.TRAIN_BN)

resnet_graph就是标准的resnet网络,如图1所示C1,C2和layer_name对应,这里没有用C1(stage 5),C2, C3, C4, C5用于FPN网络
mask_rcnn keras源码跟读1)模型搭建_第1张图片
resnet相关介绍:https://blog.csdn.net/jiangpeng59/article/details/79609392

1.2 特征提取网络_FPN网络
简单介绍FPN:把底层的特征和高层的特征进行融合,便于细致检测。这里P5=C5,然后P4=P5+C4,最终得到rpn_feature_maps,注意这里多了个P6,其仅是由P5下采样获得。
FPN网络相关:https://blog.csdn.net/u014380165/article/details/72890275

# Top-down Layers
# TODO: add assert to varify feature map sizes match what's in config
P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5)
P4 = KL.Add(name="fpn_p4add")([
	KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
	KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)])
P3 = KL.Add(name="fpn_p3add")([
	KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
	KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)])
P2 = KL.Add(name="fpn_p2add")([
	KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
	KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)])
# Attach 3x3 conv to all P layers to get the final feature maps.
P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2)
P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3)
P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4)
P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5)
# P6 is used for the 5th anchor scale in RPN. Generated by
# subsampling from P5 with stride of 2.
P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)

# Note that P6 is used in RPN, but not in the classifier heads.
rpn_feature_maps = [P2, P3, P4, P5, P6]
mrcnn_feature_maps = [P2, P3, P4, P5]

1.3 RPN网络
RPN主要实现2个功能:
1> box的前景色和背景色的分类
2>box框体的回归修正

# RPN Model
rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE,
                      len(config.RPN_ANCHOR_RATIOS), 256)

然后进入到build_rpn_model函数,其把rpn定义成模型,便于重复使用

def build_rpn_model(anchor_stride, anchors_per_location, depth):
    """Builds a Keras model of the Region Proposal Network.
    It wraps the RPN graph so it can be used multiple times with shared
    weights.

    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).
    depth: Depth of the backbone feature map.

    Returns a Keras Model object. The model outputs, when called, are:
    rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax)
    rpn_probs: [batch, W, W, 2] Anchor classifier probabilities.
    rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
                applied to anchors.
    """
    input_feature_map = KL.Input(shape=[None, None, depth],
                                 name="input_rpn_feature_map")
    outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride)
    return KM.Model([input_feature_map], outputs, name="rpn_model")

主要看rpn_graph函数,首先对FPN传递过来的feature_map进行一个3*3的卷积(增强鲁棒性?),然后对这个输出的共享feature_map进行了2个分支:(1)前景和背景的分类 (2)框体坐标回归
以背景/前景分类为例,shared的feature_map中每个像素点都有anchors_per_location个anchor, 而每个anchor都有2个概率的取值(BG/FG),reshape后即可获得所有anchor对应BG/FG的取值。

def rpn_graph(feature_map, anchors_per_location, anchor_stride):
    """Builds the computation graph of Region Proposal Network.

    feature_map: backbone features [batch, height, width, depth]
    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).

    Returns:
        rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax)
        rpn_probs: [batch, H, W, 2] Anchor classifier probabilities.
        rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
                  applied to anchors.
    """
    # TODO: check if stride of 2 causes alignment issues if the featuremap
    #       is not even.
    # Shared convolutional base of the RPN
    shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu',
                       strides=anchor_stride,
                       name='rpn_conv_shared')(feature_map)

    # Anchor Score. [batch, height, width, anchors per location * 2].
    x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid',
                  activation='linear', name='rpn_class_raw')(shared)

    # Reshape to [batch, anchors, 2]
    rpn_class_logits = KL.Lambda(
        lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x)

    # Softmax on last dimension of BG/FG.
    rpn_probs = KL.Activation(
        "softmax", name="rpn_class_xxx")(rpn_class_logits)

    # Bounding box refinement. [batch, H, W, anchors per location, depth]
    # where depth is [x, y, log(w), log(h)]
    x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid",
                  activation='linear', name='rpn_bbox_pred')(shared)

    # Reshape to [batch, anchors, 4]
    rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x)

    return [rpn_class_logits, rpn_probs, rpn_bbox]

然后让FPN网络生成的 rpn_feature_maps = [P2, P3, P4, P5, P6],依次通过RPN网络,获得对应的输出[“rpn_class_logits”, “rpn_class”, “rpn_bbox”],并把对应的结果有序地整合在一起

# Loop through pyramid layers
layer_outputs = []  # list of lists
for p in rpn_feature_maps:
	layer_outputs.append(rpn([p]))
# Concatenate layer outputs
# Convert from list of lists of level outputs to list of lists
# of outputs across levels.
# e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
outputs = list(zip(*layer_outputs))
outputs = [KL.Concatenate(axis=1, name=n)(list(o))
		   for o, n in zip(outputs, output_names)]

rpn_class_logits, rpn_class, rpn_bbox = outputs

1.4 ProposalLayer 层
proposals简介:筛选后的anchor(拥有更多目标前景,anchor更加接近target_box)
生成的proposal并非越多越好,因而设置了阈值proposal_count ,关于非极大值抑制NMS,可以参考:非极大值抑制的几种实现

# Generate proposals
# Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
# and zero padded.
proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\
	else config.POST_NMS_ROIS_INFERENCE
rpn_rois = ProposalLayer(
	proposal_count=proposal_count,
	nms_threshold=config.RPN_NMS_THRESHOLD,
	name="ROI",
	config=config)([rpn_class, rpn_bbox, anchors])

然后进入到自定义的层ProposalLayer,其接受的参数有3个:
rpn_probs:所有像素点BG/FG的概率值。
rpn_bbox:所有像素点对应anchor上的4个偏移值*[dy, dx, log(dh), log(dw)]*。
anchors:预先生成的有序anchor列表,注意这里有序表示feature_map上像素点生成的anchor以及该像素点生成的rpn_probs和rpn_bbox是对应的(这样理解对?)。
最终ProposalLayer会返回一个边框修正后及mns过滤的anchor集合(称为roi或proposal),至此已经完成了目标的检测

class ProposalLayer(KE.Layer):
    """Receives anchor scores and selects a subset to pass as proposals
    to the second stage. Filtering is done based on anchor scores and
    non-max suppression to remove overlaps. It also applies bounding
    box refinement deltas to anchors.

    Inputs:
        rpn_probs: [batch, anchors, (bg prob, fg prob)]
        rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]
        anchors: [batch, (y1, x1, y2, x2)] anchors in normalized coordinates

    Returns:
        Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)]
    """

    def __init__(self, proposal_count, nms_threshold, config=None, **kwargs):
        super(ProposalLayer, self).__init__(**kwargs)
        self.config = config
        self.proposal_count = proposal_count
        self.nms_threshold = nms_threshold

    def call(self, inputs):
        # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1]
        scores = inputs[0][:, :, 1]
        # Box deltas [batch, num_rois, 4]
        deltas = inputs[1]
        deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])
        # Anchors
        anchors = inputs[2]

        # Improve performance by trimming to top anchors by score
        # and doing the rest on the smaller subset.
        pre_nms_limit = tf.minimum(6000, tf.shape(anchors)[1])
        ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True,
                         name="top_anchors").indices
        scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x),
                                    self.config.IMAGES_PER_GPU,
                                    names=["pre_nms_anchors"])

        # Apply deltas to anchors to get refined anchors.
        # [batch, N, (y1, x1, y2, x2)]
        boxes = utils.batch_slice([pre_nms_anchors, deltas],
                                  lambda x, y: apply_box_deltas_graph(x, y),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors"])
		#normalized coordinates就是对应原图的百分比坐标
		#下面的作用:防止修正后的anchor坐标超出了边界即0<=x,y<=1
        # Clip to image boundaries. Since we're in normalized coordinates,
        # clip to 0..1 range. [batch, N, (y1, x1, y2, x2)]
        window = np.array([0, 0, 1, 1], dtype=np.float32)
        boxes = utils.batch_slice(boxes,
                                  lambda x: clip_boxes_graph(x, window),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors_clipped"])

        # Filter out small boxes
        # According to Xinlei Chen's paper, this reduces detection accuracy
        # for small objects, so we're skipping it.

        # Non-max suppression
        def nms(boxes, scores):
            indices = tf.image.non_max_suppression(
                boxes, scores, self.proposal_count,
                self.nms_threshold, name="rpn_non_max_suppression")
            proposals = tf.gather(boxes, indices)
            # Pad if needed
            padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0)
            #不足阈值大小则底部补0来填充
            proposals = tf.pad(proposals, [(0, padding), (0, 0)])
            return proposals
        proposals = utils.batch_slice([boxes, scores], nms,
                                      self.config.IMAGES_PER_GPU)
        return proposals

    def compute_output_shape(self, input_shape):
        return (None, self.proposal_count, 4)

1.5DetectionTargetLayer层

# Generate detection targets
# Subsamples proposals and generates target outputs for training
# Note that proposal class IDs, gt_boxes, and gt_masks are zero
# padded. Equally, returned rois and targets are zero padded.
#target_rois即上面proposal_layer的rpn_rois输出(通常会用rpn网络)
rois, target_class_ids, target_bbox, target_mask =\
	DetectionTargetLayer(config, name="proposal_targets")([
		target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])

在其类中,主要关注call部分

class DetectionTargetLayer(KE.Layer):
    """Subsamples proposals and generates target box refinement, class_ids,
    and masks for each.

    Inputs:
    proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs.
    gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized
              coordinates.
    gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type

    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized
          coordinates
    target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs.
    target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, NUM_CLASSES,
                    (dy, dx, log(dh), log(dw), class_id)]
                   Class-specific bbox refinements.
    target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width)
                 Masks cropped to bbox boundaries and resized to neural
                 network output size.

    Note: Returned arrays might be zero padded if not enough target ROIs."""
	def call(self, inputs):
		proposals = inputs[0]
		gt_class_ids = inputs[1]
		gt_boxes = inputs[2]
		gt_masks = inputs[3]

		# Slice the batch and run a graph for each slice
		# TODO: Rename target_bbox to target_deltas for clarity
		names = ["rois", "target_class_ids", "target_bbox", "target_mask"]
		outputs = utils.batch_slice(
			[proposals, gt_class_ids, gt_boxes, gt_masks],
			lambda w, x, y, z: detection_targets_graph(
				w, x, y, z, self.config),
			self.config.IMAGES_PER_GPU, names=names)
		return outputs

detection_targets_graph函数负责处理输入的[proposals, gt_class_ids, gt_boxes, gt_masks]
代码有点长,首先计算proposals和gt_boxes的覆盖度矩阵proposals*gt_boxes,然后获得每个proposals一个与gt_boxes最大覆盖度值roi_iou_max,如果roi_iou_max>0.5,则认为该proposals是 positive_roi,最后再把对应gt_box分配给对应的positive_roi并进行框体微调获得对应偏移。最终返回的rois包含positive_roi和negative_roi。

def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config):
    """Generates detection targets for one image. Subsamples proposals and
    generates target class IDs, bounding box deltas, and masks for each.

    Inputs:
    proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_class_ids: [MAX_GT_INSTANCES] int class IDs
    gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates.
    gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type.

    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded.
    deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
            Class-specific bbox refinements.
    masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox
           boundaries and resized to neural network output size.

    Note: Returned arrays might be zero padded if not enough target ROIs.
    """
    # Assertions
    asserts = [
        tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],
                  name="roi_assertion"),
    ]
    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # Remove zero padding
	#去除padding的0
    proposals, _ = trim_zeros_graph(proposals, name="trim_proposals")
    gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes")
    gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros,
                                   name="trim_gt_class_ids")
    gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2,
                         name="trim_gt_masks")
	#这里crowds没看懂 gt_class_ids < 0 ??
    # Handle COCO crowds
    # A crowd box in COCO is a bounding box around several instances. Exclude
    # them from training. A crowd box is given a negative class ID.
    crowd_ix = tf.where(gt_class_ids < 0)[:, 0]
    non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0]
    crowd_boxes = tf.gather(gt_boxes, crowd_ix)
    crowd_masks = tf.gather(gt_masks, crowd_ix, axis=2)
    gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix)
    gt_boxes = tf.gather(gt_boxes, non_crowd_ix)
    gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2)

	#计算proposals和gt_boxes的覆盖度矩阵proposals*gt_boxes
    # Compute overlaps matrix [proposals, gt_boxes]
    overlaps = overlaps_graph(proposals, gt_boxes)

    # Compute overlaps with crowd boxes [anchors, crowds]
    crowd_overlaps = overlaps_graph(proposals, crowd_boxes)
    crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)
    no_crowd_bool = (crowd_iou_max < 0.001)

    # Determine postive and negative ROIs
	#获得proposals和gt_box最大的覆盖度值[n_proposals,1]
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. Positive ROIs are those with >= 0.5 IoU with a GT box
	#roi覆盖度值>0.5则认为其是positive_roi bool[n_proposals,1]
    positive_roi_bool = (roi_iou_max >= 0.5)
	#获取positive_roi的索引[filter_n_proposals,1]
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds.
    negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0]

	#对positive_roi和inegative_roi进行了采样
    # Subsample ROIs. Aim for 33% positive
    # Positive ROIs
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE *
                         config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    positive_count = tf.shape(positive_indices)[0]
    # Negative ROIs. Add enough to maintain positive:negative ratio.
    r = 1.0 / config.ROI_POSITIVE_RATIO
    negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # Gather selected ROIs
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

	#把采样后的positive_roi分配给gt_box
    # Assign positive ROIs to GT boxes.
    positive_overlaps = tf.gather(overlaps, positive_indices)
	#每个positive_rois对应gt_box覆盖度最大值的下标(即列下标)[filter_n_proposals,1]
    roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1)
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
    roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)

    # Compute bbox refinement for positive ROIs
    deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes)
    deltas /= config.BBOX_STD_DEV

    # Assign positive ROIs to GT masks
    # Permute masks to [N, height, width, 1]
    transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1)
    # Pick the right mask for each ROI
    roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment)

    # Compute mask targets....
    
    # Append negative ROIs and pad bbox deltas and masks that
    # are not used for negative ROIs with zeros.
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])
    roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
    deltas = tf.pad(deltas, [(0, N + P), (0, 0)])
    masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)])
	#....
    return rois, roi_gt_class_ids, deltas, masks

1.6Network Heads
经过DetectionTargetLayer层生成了很多rois,但它们大小不一,这里需要对其进行大小归一处理,并和之前的FPN生成的feature_map联系起来。

# Network Heads
# TODO: verify that this handles zero padded ROIs
mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
	fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,
						 config.POOL_SIZE, config.NUM_CLASSES,
						 train_bn=config.TRAIN_BN)

然后进入到***fpn_classifier_graph***函数,首先通过PyramidROIAlign层获得rois固定pooling大小输出,之后用了2个fc层特征化了feature_map,和上面提及的RPN类似对类别进行分类,对4个坐标点进行回归。

def fpn_classifier_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True):
    """Builds the computation graph of the feature pyramid network classifier
    and regressor heads.

    rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
          coordinates.
    feature_maps: List of feature maps from diffent layers of the pyramid,
                  [P2, P3, P4, P5]. Each has a different resolution.
    - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    pool_size: The width of the square feature map generated from ROI Pooling.
    num_classes: number of classes, which determines the depth of the results
    train_bn: Boolean. Train or freeze Batch Norm layres

    Returns:
        logits: [N, NUM_CLASSES] classifier logits (before softmax)
        probs: [N, NUM_CLASSES] classifier probabilities
        bbox_deltas: [N, (dy, dx, log(dh), log(dw))] Deltas to apply to
                     proposal boxes
    """
    # ROI Pooling
    # Shape: [batch, num_boxes, pool_height, pool_width, channels]
    x = PyramidROIAlign([pool_size, pool_size],
                        name="roi_align_classifier")([rois, image_meta] + feature_maps)
    # Two 1024 FC layers (implemented with Conv2D for consistency)
    x = KL.TimeDistributed(KL.Conv2D(1024, (pool_size, pool_size), padding="valid"),
                           name="mrcnn_class_conv1")(x)
    x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn)
    x = KL.Activation('relu')(x)
    x = KL.TimeDistributed(KL.Conv2D(1024, (1, 1)),
                           name="mrcnn_class_conv2")(x)
    x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),
                       name="pool_squeeze")(x)

    # Classifier head
    mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes),
                                            name='mrcnn_class_logits')(shared)
    mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"),
                                     name="mrcnn_class")(mrcnn_class_logits)

    # BBox head
    # [batch, boxes, num_classes * (dy, dx, log(dh), log(dw))]
    x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'),
                           name='mrcnn_bbox_fc')(shared)
    # Reshape to [batch, boxes, num_classes, (dy, dx, log(dh), log(dw))]
    s = K.int_shape(x)
    mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x)

    return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox

下面重点看下***PyramidROIAlign***
首先关注一个问题:roi来自于哪个feature_map(P2-P5对应的featrue_map) ? 也就是说对应给定的roi,应该去哪个feature_map上做ROIAlign?因为之前生成anchor数目过多,没有记录其来自哪个feature_map,论文提出了一个近似的计算公式:(截图来自于FPN网络原论文)
mask_rcnn keras源码跟读1)模型搭建_第2张图片
然后在看代码就清晰多了,至于roialign,代码直接调用了tf.image.crop_and_resize函数,这里有个较好的roi_pooling博文:https://blog.deepsense.ai/region-of-interest-pooling-explained/

class PyramidROIAlign(KE.Layer):
    """Implements ROI Pooling on multiple levels of the feature pyramid.

    Params:
    - pool_shape: [height, width] of the output pooled regions. Usually [7, 7]

    Inputs:
    - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized
             coordinates. Possibly padded with zeros if not enough
             boxes to fill the array.
    - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    - Feature maps: List of feature maps from different levels of the pyramid.
                    Each is [batch, height, width, channels]

    Output:
    Pooled regions in the shape: [batch, num_boxes, height, width, channels].
    The width and height are those specific in the pool_shape in the layer
    constructor.
    """

    def __init__(self, pool_shape, **kwargs):
        super(PyramidROIAlign, self).__init__(**kwargs)
        self.pool_shape = tuple(pool_shape)

    def call(self, inputs):
        # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords
        boxes = inputs[0]

        # Image meta
        # Holds details about the image. See compose_image_meta()
        image_meta = inputs[1]

        # Feature Maps. List of feature maps from different level of the
        # feature pyramid. Each is [batch, height, width, channels]
        feature_maps = inputs[2:]

        # Assign each ROI to a level in the pyramid based on the ROI area.
        y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
        h = y2 - y1
        w = x2 - x1
        # Use shape of first image. Images in a batch must have the same size.
        image_shape = parse_image_meta_graph(image_meta)['image_shape'][0]
        # Equation 1 in the Feature Pyramid Networks paper. Account for
        # the fact that our coordinates are normalized here.
        # e.g. a 224x224 ROI (in pixels) maps to P4
        image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32)
        roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))
        roi_level = tf.minimum(5, tf.maximum(
            2, 4 + tf.cast(tf.round(roi_level), tf.int32)))
        roi_level = tf.squeeze(roi_level, 2)

        # Loop through levels and apply ROI pooling to each. P2 to P5.
        pooled = []
        box_to_level = []
        for i, level in enumerate(range(2, 6)):
            ix = tf.where(tf.equal(roi_level, level))
            level_boxes = tf.gather_nd(boxes, ix)

            # Box indicies for crop_and_resize.
            box_indices = tf.cast(ix[:, 0], tf.int32)

            # Keep track of which box is mapped to which level
            box_to_level.append(ix)

            # Stop gradient propogation to ROI proposals
            level_boxes = tf.stop_gradient(level_boxes)
            box_indices = tf.stop_gradient(box_indices)

            # Crop and Resize
            # From Mask R-CNN paper: "We sample four regular locations, so
            # that we can evaluate either max or average pooling. In fact,
            # interpolating only a single value at each bin center (without
            # pooling) is nearly as effective."
            #
            # Here we use the simplified approach of a single value per bin,
            # which is how it's done in tf.crop_and_resize()
            # Result: [batch * num_boxes, pool_height, pool_width, channels]
            pooled.append(tf.image.crop_and_resize(
                feature_maps[i], level_boxes, box_indices, self.pool_shape,
                method="bilinear"))

        # Pack pooled features into one tensor
        pooled = tf.concat(pooled, axis=0)
		#.....

1.7build_fpn_mask_graph
在roi的基础上用了一个简易版的FCN网络进行mask (简易版?FPN网络也具有不同层次的抽象特征)

mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,
                                 input_image_meta,
                                 config.MASK_POOL_SIZE,
                                 config.NUM_CLASSES,
                                 train_bn=config.TRAIN_BN)

def build_fpn_mask_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True):
    """Builds the computation graph of the mask head of Feature Pyramid Network.

    rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
          coordinates.
    feature_maps: List of feature maps from diffent layers of the pyramid,
                  [P2, P3, P4, P5]. Each has a different resolution.
    image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    pool_size: The width of the square feature map generated from ROI Pooling.
    num_classes: number of classes, which determines the depth of the results
    train_bn: Boolean. Train or freeze Batch Norm layres

    Returns: Masks [batch, roi_count, height, width, num_classes]
    """
    # ROI Pooling
    # Shape: [batch, boxes, pool_height, pool_width, channels]
    x = PyramidROIAlign([pool_size, pool_size],
                        name="roi_align_mask")([rois, image_meta] + feature_maps)

    # Conv layers
    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv1")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn1')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv2")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn2')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv3")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn3')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv4")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn4')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"),
                           name="mrcnn_mask_deconv")(x)
    x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),
                           name="mrcnn_mask")(x)
    return x

前面4个卷积feature_map_size保存不变,然后接了一个逆卷积Conv2DTranspose,feature_map_size变成了之前的2倍(类似于上采样),这和配置文件中的参数是对应:

MASK_POOL_SIZE = 14
# Shape of output mask
# To change this you also need to change the neural network mask branch
MASK_SHAPE = [28, 28]

1.8 loss+model
下面是loss和keras模型生成的部分

  # Losses
rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")(
	[input_rpn_match, rpn_class_logits])
rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
	[input_rpn_bbox, input_rpn_match, rpn_bbox])
class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
	[target_class_ids, mrcnn_class_logits, active_class_ids])
bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
	[target_bbox, target_class_ids, mrcnn_bbox])
mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
	[target_mask, target_class_ids, mrcnn_mask])

# Model
inputs = [input_image, input_image_meta,
		  input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]
if not config.USE_RPN_ROIS:
	inputs.append(input_rois)
outputs = [rpn_class_logits, rpn_class, rpn_bbox,
		   mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
		   rpn_rois, output_rois,
		   rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
model = KM.Model(inputs, outputs, name='mask_rcnn')

Summary:

**1.**由FPN网络获得feature_map[P2, P3, P4, P5, P6],并获取其对应下的anchor集合
2.feature_map[P2-P6]依次通过RNP网络,获得对应的[“rpn_class_logits”, “rpn_class”, “rpn_bbox”],这里对坐标进行了第1次线性回归。
3.ProposalLayer把RNP网络生成的[“rpn_class”, “rpn_bbox”]和Anchor对应起来,对前景概率FG降序并取前N(N=6000)个对应的indics,并由此indics获得对应的rpn_bbox(deltas)和anchors(pre_nms_anchors),然后利用deltas对pre_nms_anchors进行坐标修正。最后用极大值抑制算法对修正后的anchors进行过滤获得rois
4.DetectionTargetLayer根据roi和gt_box的iou(交并比)划分positive_roi和negative_roi.取其比例1:3,最终返回
5.fpn_classifier_graph把roi和feature_map[P2-P6]联系起来,首先把roi在对应的feature_map进行roi_pooling获得固定大小的feature_map(77),然后在feature_map(77)的基础上进行类别分类和第2次坐标线性回归

你可能感兴趣的:(机器·深度学习)