- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- Python机器学习实战:推荐系统的原理与实现方法
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:推荐系统的原理与实现方法1.背景介绍1.1问题的由来在当今数字化时代,推荐系统已成为电子商务、媒体流媒体平台、社交媒体以及在线购物网站的核心组件之一。推荐系统旨在根据用户的历史行为、偏好以及社会关系等因素,为用户提供个性化的内容或商品建议,从而提高用户体验、增加用户粘性,并提升业务转化率。1.2研究现状随着大数据和深度学习技术的快速发展,推荐系统正从基于规则的简单过滤模型
- 机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现
微学AI
机器学习实战项目机器学习数学建模人工智能
大家好,我是微学AI,今天给大家介绍一下机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现。文章目录一、项目介绍二、项目背景三、数学原理与算法分析动态规划模型遗传算法设计编码方案适应度函数约束处理算法参数能量消耗模型一泵房能耗二泵房能耗效率计算模型四、系统特性与创新点代码实现基于python实现完整代码五、应用价值与扩展方向六、结论一、项目介绍本项目是一个基于动态规划和遗传算法的水泵调
- 机器学习实战---书中谬误讨论
奔跑的石头_
机器学习机器学习numpy
关注公众号“码字读书会”,了解最新消息。5.2.3节首先要把5.2.2节内容做了,不然得不到回归系数weights值。即dataArr,labelMat=logRegres.loadDataSet()logRegres.gradAscent(dataArr,labelMat)reload(logRegres)logRegres.plotBestFit(weights.getA())此处画图做拟合曲
- Python机器学习实战:使用Pandas进行数据预处理与分析
AI天才研究院
AIAgent应用开发计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:使用Pandas进行数据预处理与分析1.背景介绍在机器学习和数据科学领域中,数据预处理是一个至关重要的步骤。原始数据通常存在噪声、缺失值、异常值等问题,直接将其输入机器学习模型会导致模型性能下降。因此,对数据进行清洗、转换和规范化等预处理操作是必不可少的。Pandas是Python中广泛使用的数据分析库,提供了高性能、易于使用的数据结构和数据分析工具。它可以高效地处理结构
- Python机器学习实战:智能聊天机器人的构建与优化
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:智能聊天机器人的构建与优化作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能与聊天机器人的发展历程1.1.1人工智能的起源与发展人工智能(ArtificialIntelligence,AI)的起源可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。随后,人工智能经历了几次高潮和低谷,期间涌现出许多重要的理论和算法,例如符号主义、连接主义、专家系统
- 分享全国数字人才技能提升师资培训班 第五期邀请函
泰迪智能科技01
人工智能人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 分享全国数字人才技能提升师资培训班 第五期
泰迪智能科技01
人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- python3源代码_机器学习实战源代码python3
weixin_39955781
python3源代码
机器学习实战源代码python3\machinelearninginaction\.git\COMMIT_EDITMSG机器学习实战源代码python3\machinelearninginaction\.git\config机器学习实战源代码python3\machinelearninginaction\.git\description机器学习实战源代码python3\machinelearnin
- Python机器学习实战:分布式机器学习框架Dask的入门与实战
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:分布式机器学习框架Dask的入门与实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,数据量的爆炸式增长使得传统的单机处理方式逐渐显得力不从心。无论是数据预处理、特征工程还是模型训练,单机环境下的计算资源和内存限制都成为了瓶颈。为了应对这些挑战,分布式计算框架应运而生。Das
- 【机器学习实战】监督学习:使用 Scikit-learn 库训练一个房价预测模型
phenix_01
机器学习学习scikit-learn
一、引言在机器学习领域,监督学习是一种通过已有标注数据训练模型,从而对新数据进行预测的重要方法。房价预测作为回归问题的典型应用,在房地产分析、投资决策等场景中具有重要价值。本文将基于Scikit-learn库,完整演示从数据准备到模型评估的全流程,带领读者掌握房价预测模型的构建方法。二、数据准备:从Kaggle获取数据集本文使用Kaggle上的经典波士顿房价数据集(BostonHousingDat
- 机器学习实战02:学生成绩预测与可视化分析
梦弦18
机器学习信息可视化
目录一、项目背景二、数据读取与初步处理三、数据可视化分析(一)相关性矩阵热图(二)父母教育水平与成绩关系(三)种族与成绩关系(四)测试准备课程与成绩关系(五)其他分析四、机器学习模型构建与评估(一)数据预处理(二)模型训练与评估五、总结六、全代码七.数据集callme在教育领域,了解影响学生成绩的因素并对成绩进行预测,对提升教学质量、制定个性化学习方案具有重要意义。本文将通过一个机器学习实战项目,
- Python机器学习实战:掌握NumPy的高效数据操作
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
NumPy,Python,机器学习,数据操作,数组,向量,矩阵,线性代数,科学计算1.背景介绍在机器学习领域,数据是至关重要的资源。高效、准确地处理和操作数据是机器学习模型训练和应用的基础。NumPy(NumericalPython)作为Python生态系统中强大的数值计算库,为机器学习提供了高效的数据结构和操作工具。NumPy的核心是ndarray(n-dimensionalarray)数据结构
- 机器学习实战步骤与案例
enyp80
机器学习
机器学习实战需要结合理论和实践,以下是一个清晰的实战步骤指南,涵盖关键工具、常见任务示例以及避坑建议,帮助你快速上手:一、机器学习实战核心步骤明确问题与数据准备任务类型:分类、回归、聚类、强化学习?数据来源:Kaggle、UCI、公开API、爬虫或业务数据库。数据格式:结构化数据(CSV/SQL)或非结构化数据(图片/文本)。工具推荐:数据清洗:Pandas、NumPy可视化:Matplotlib
- 机器学习实战:6种数据集划分方法详解与代码实现
慕婉0307
机器学习机器学习人工智能深度学习数据集划分
在机器学习项目中,合理划分数据集是模型开发的关键第一步。本文将全面介绍6种常见数据格式的划分方法,并附完整Python代码示例,帮助初学者掌握这一核心技能。一、数据集划分基础函数1.核心函数:train_test_splitfromsklearn.model_selectionimporttrain_test_split#基本用法X_train,X_test,y_train,y_test=trai
- 机器学习实战:鸢尾花分类
学术乙方
Python机器学习分类人工智能
项目目标使用经典的鸢尾花数据集(IrisDataset),通过支持向量机(SVM)算法训练一个分类模型,能够根据花瓣和萼片的测量数据预测鸢尾花的种类。环境准备Python#需要安装的库(在终端运行)pipinstallnumpypandasmatplotlibscikit-learn完整代码实现#1.导入必要的库importnumpyasnpimportpandasaspdfromsklearni
- 机器学习实战:以鸢尾花数据集分类问题为例
Tech Synapse
机器学习分类人工智能SVMscikit-learn鸢尾花数据集
在当今数据驱动的时代,机器学习已成为解决复杂问题的重要工具。本文将通过一个具体的分类问题——鸢尾花数据集(IrisDataset)的分类,展示如何在实际项目中应用机器学习。我们将使用Python编程语言,并借助流行的机器学习库scikit-learn来实现这一目标。文章将详细介绍数据预处理、模型选择、训练、评估以及预测等步骤,并提供完整且可直接运行的代码示例。一、项目背景与数据集介绍鸢尾花数据集是
- 从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南
灏瀚星空
python机器学习开发语言学习人工智能算法金融
从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南引言在算法交易席卷全球金融市场的今天,搭建一套高可用的量化工具链已成为开发者掘金Alpha的核心竞争力。然而,面对庞杂的技术组件——从海量数据的清洗对齐、策略逻辑的回测验证,到机器学习模型的实盘部署——许多开发者陷入困境:Pandas处理Tick数据内存爆炸怎么办?回测曲线完美但实盘表现惨淡如何归因?深度学习模型预测准确却无法
- 机器学习实战:PyTorch 与 Sklearn 线性回归模型大对决
#guiyin11
机器学习pytorchsklearn
一、引言在机器学习领域,模型的构建和训练依赖于各种工具和框架。PyTorch和Sklearn作为其中的佼佼者,在实现线性回归模型时各有千秋。深入了解它们的差异和优势,对提升模型性能和开发效率意义重大。本文将全面剖析这两个框架在构建和训练线性回归模型方面的特点。二、实验原理(一)线性回归基本原理线性回归旨在寻找输入特征X与输出标签y的线性关系,通过公式y=Xθ+ϵ来描述。其中,θ是待估参数,ϵ为随机
- Python机器学习实战:机器学习在金融风险评估中的应用
AI天才研究院
AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:机器学习在金融风险评估中的应用1.背景介绍金融风险评估是金融行业中至关重要的一环。随着数据量的爆炸性增长和计算能力的提升,机器学习在金融风险评估中的应用变得越来越普遍。通过机器学习算法,我们可以更准确地预测违约风险、市场风险和操作风险,从而帮助金融机构做出更明智的决策。2.核心概念与联系2.1机器学习概述机器学习是一种通过数据训练模型,使其能够自动改进和预测的技术。它主要
- 【机器学习】解锁智能奥秘:从理论到实战的奇幻之旅
Guiat
科学技术变革创新机器学习人工智能开源数据化
个人主页:GUIQU.归属专栏:科学技术变革创新文章目录1.机器学习:开启智能新时代2.机器学习的基础概念大揭秘2.1定义与内涵2.2与人工智能、深度学习的关系图谱2.3关键术语全解析3.机器学习三要素:模型、策略与算法的深度剖析3.1模型:问题解决的基石3.2策略:模型优劣的裁判3.3算法:模型优化的引擎4.机器学习实战:从数据到模型的蜕变之旅4.1数据准备:机器学习的燃料4.2模型搭建:智能大
- 政安晨:【Keras机器学习示例演绎】(十四)—— 用于弱光图像增强的零 DCE
政安晨
机器学习keras人工智能tensorflow深度学习神经网络弱光图像增强
目录简介下载LOL数据集创建TensorFlow数据集零DCE框架了解光线增强曲线DCE-Net损失函数色彩恒定损失曝光损失光照平滑度损失空间一致性损失深度曲线估计模型训练推论测试图像推理政安晨的个人主页:政安晨欢迎点赞✍评论⭐收藏收录专栏:TensorFlow与Keras机器学习实战希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!本文目标:实施零参考深度曲线估算,实现低-高
- Python机器学习实战:随机森林算法 集成学习的力量
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:随机森林算法-集成学习的力量作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Python,机器学习,随机森林,集成学习,分类,回归,数据科学,机器学习算法1.背景介绍1.1问题的由来随着数据科学的快速发展,机器学习技术在各个领域都得到了广泛应用。在众多机器学习算法中,随机森林(RandomForest)因其强大的分类
- 【机器学习实战】加密货币价格预测:从数据探索到模型优化的完整指南
loopdeloop
机器学习人工智能
【机器学习实战】加密货币价格预测:从数据探索到模型优化的完整指南前言最近在《机器学习》课程中完成了一个关于加密货币价格预测的项目,收获颇丰。作为一个小白,从数据清洗到模型优化,踩了不少坑也积累了一些经验。今天就把这个项目的完整过程分享给大家,希望能帮助到对机器学习和加密货币感兴趣的同学~项目概述这个项目的主要目标是利用机器学习算法预测加密货币价格的涨跌趋势。我们使用了一个包含10,422条交易记录
- 机器学习实战:从实验室到现实应用的演变
礼盒装童年
机器学习
在过去的十年里,机器学习(ML)从一个学术研究的热门领域,逐渐转变为日常生活中的重要技术支柱。从智能推荐系统到自动驾驶汽车,机器学习已经无处不在。然而,许多人依然把机器学习看作一种抽象的理论工具,难以在实际工作中真正掌握它的精髓。本文将带你从“黑箱”理论到“实战”应用的转变,探索如何将机器学习融入实际工作中,不仅仅停留在代码或算法层面,而是与现实问题深度融合,实现技术的真正价值。1.机器学习的本质
- Python数据科学与机器学习实战 - 前言与学习路线图
SuperMale-zxq
机器学习python人工智能深度学习数据挖掘
Python数据科学与机器学习实战-前言与学习路线图为什么你需要这份路线图在数据爆炸的时代,每个行业都在经历一场数据革命。无论你是刚踏入职场的新人,还是希望转型的资深工程师,掌握Python数据科学与机器学习技能已经不再是"锦上添花",而是"必备武器"。想象一下:当同事还在Excel中手动处理数据时,你已经用Python自动化完成了分析;当产品经理还在猜测用户需求时,你已经通过机器学习模型精准预测
- 机器学习实战 第一章 机器学习基础
LuoY、
MachineLearning机器学习算法人工智能
第一章机器学习1.1何谓机器学习1.2关键术语1.3机器学习的主要任务1.4如何选择合适的算法1.5开发机器学习应用程序的步骤1.6Python语言的优势1.1何谓机器学习 1、简单地说,机器学习就是把无序的数据转换成有用的信息; 2、机器学习能让我们自数据集中受启发,我们会利用计算机来彰显数据背后的真实含义; 3、机器学习横跨计算机科学、工程技术和统计学等多个学科,需要多学科的
- 机器学习专栏博文汇总
python游乐园
机器学习机器学习人工智能合集
本篇汇集了Python游乐园中机器学习专栏博文,会持续更新,需要的小伙伴可以收藏一下Python机器学习实战:基于不同机器学习算法的鸢尾花数据集分析机器学习常见问题:过拟合及其处理方式结构化数据和非结构化数据的区别是什么如何选择合适的机器学习算法来处理非结构化数据可用于文本分析的机器学习算法都有哪些Python机器学习实战:遗传算法机器学习基础:什么是启发式算法机器学习中常用的调节参数的方法(附P
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR