- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《赛题名称》基于QuickRNet的TPU超分模型部署巴黎欧莱雅林松智能应用业务部算法工程师中信科移动中国-北京
[email protected]团队简介巴黎欧莱雅团队包含一个队长和零个队员。队长林松,研究生学历,2019-2022在中国矿业大学(北京)攻读硕士学位,于2022年7月加入中信科移动公司,现在在智能应用业务部负责视觉AI算法的落地部署,是一名算法工程师,主要擅长
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于Real-ESRGAN的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》洋洋很棒李鹏飞算法工程师中国-烟台
[email protected]团队简介本人从事工业、互联网场景传统图像算法及深度学习算法开发、部署工作。其中端侧算法开发及部署工作5年时间。摘要本文是《基于TPU平台实现超分辨率重建模型部署》方案中算法方案的说明。本作品算法模型选用的是Real-ESRGAN。Real-ESRGAN是基
- 使用开源 Upscayl 工具放大图片
winfredzhang
人工智能Upscayl放大开源
Upscayl是一个基于人工智能的图像放大工具,可以用来将低分辨率的图片放大到高分辨率。Upscayl使用了一种称为超分辨率重建的技术,可以生成逼真的高分辨率图像。在本教程中,我们将介绍如何使用Upscaly工具放大图片。准备工作下载:https://github.com/upscayl/upscayl/releases/download/v2.9.5/upscayl-2.9.5-win.exe安
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏
[email protected]吕欢欢计算机科学与技术系博士南京大学中国-江苏
[email protected]张凯铭物理学系本科四川大学中国-四川283574
- TPU编程竞赛|算丰助力2023 CCF大数据与计算智能大赛!
算能开发者社区
人工智能算法
目录赛题介绍赛题背景赛题任务赛程安排初赛阶段2023/09/25-11/27决赛阶段2023/11/28-12/17评分机制奖项设置赛题奖项赛事奖项近日,第十一届2023CCF大数据与计算智能大赛(简称CCFBDCI)正式启动报名,本次大赛含竞技赛题、数字安全公开赛等十余道竞技及训练赛题。算丰不仅为本次大赛提供了赛题「基于TPU平台实现视频超分辨率重建模型部署」,也为参赛选手提供丰富的云端TPU资
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案
算能开发者社区
大数据超分辨率重建人工智能
- 模型实战(18)之C++ - tensorRT部署GAN模型实现人脸超分辨重建
明月醉窗台
#深度学习实战例程c++生成对抗网络人工智能神经网络visualstudio
模型实战(18)之C++-tensorRT部署GAN模型实现人脸超分辨重建一个实现人脸超分辨率重建的demo支持StyleGAN:GPENorGFPGAN通过C++-tensorrt快速部署,推理速度每帧在RTX3090上5.5ms+,RTX3050上10ms+下边是实现效果(图片来源于网络search,如若侵权,联系删除)下边给出实现步骤:1.模型转换下载模型至本地Downloadthemode
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
Snu77
YOLOv8系列专栏YOLO人工智能深度学习python计算机视觉超分辨率重建目标检测
一、本文介绍本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的结果(这个注意力机制挺复杂的光代码就700+行),但是效果挺好的也是10
- 超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)
佐咖
超分辨率重建Pytorch深度学习超分辨率重建图像处理pythonpytorch
目录一、源码包下载二、数据集准备三、预训练权重文件四、训练环境五、训练5.1超参数修改5.2训练模型5.2.1命令方式训练5.2.2Configuration配置参数方式训练5.3模型保存六、推理测试6.1超参数修改6.2测试6.2.1命令方式测试6.2.2Configuration配置参数方式测试6.3测试结果6.4推理速度七、总结一、源码包下载源码包有官网提供的和我自己修改过代码提供的,建议学
- 人工智能超分辨率重建:揭秘图像的高清奇迹
鳗小鱼
人工智能资源分享(resource)人工智能超分辨率重建图像处理rnncnn神经网络机器学习
导言人工智能超分辨率重建技术,作为图像处理领域的一项重要创新,旨在通过智能算法提升图像的分辨率,带来更为清晰和细致的视觉体验。本文将深入研究人工智能在超分辨率重建方面的原理、应用以及技术挑战。1.超分辨率重建的基本原理单图超分辨率:利用深度学习模型,通过学习低分辨率图像与高分辨率图像的映射关系,实现对单张图像的重建。多图融合:结合多个视角或时间点的图像信息,进一步提升图像的清晰度。2.应用领域及典
- 视频超分辨率重建
zi_y_uan
超分辨率重建人工智能
使用基于GAN的超分辨率模型对视频进行超清修复,项目GitHub链接如下:https://github.com/emptysoal/VideoRestore如何使用具体参考链接中的README。
- 超分辨率重建
金戈鐡馬
超分辨率重建人工智能计算机视觉深度学习图像处理
意义客观世界的场景含有丰富多彩的信息,但是由于受到硬件设备的成像条件和成像方式的限制,难以获得原始场景中的所有信息。而且,硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代,在卫星遥感、医学影像、多媒体视频等领域中对图像质量的要求越来越高,人们不断寻求更高质量和更高分辨率的图像,来满足日益增长的需求。空间分辨率的大小是衡量图像质量的一个重要指标,也是将图像应用到实
- 基于深度学习的超分辨率综述
teacher_ma_
计算机视觉深度学习人工智能神经网络cnn
1.单图像超分辨率重建SISR方法框架由两部分组成,非线性映射学习和上采样模块。非线性映射学习模块负责完成LR到HR的映射,这过程中利用损失函数引导和监督学习的进程;上采样模块实现重建图像的放大,两个模块协同完成SISR1.1超分框架(1)前端上采样超分框架前端上采样避免在低维进行映射学习,降低了学习难度,但噪声和模糊也被放大,并且高维卷积运算增加计算量,消耗更多资源(2)后端上采样超分框架该框架
- 基于深度学习的单帧图像超分辨率重建综述
小蒋的技术栈记录
深度学习深度学习超分辨率重建人工智能
论文标题:基于深度学习的单帧图像超分辨率重建综述作者:吴靖,叶晓晶,黄峰,陈丽琼,王志锋,刘文犀发表日期:2022年9月阅读日期:2023.11.18研究背景:图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,
- 「需求广场」需求词更新明细(十六)
CSDN文库小助手
大数据pythonjavajavascriptmatlab
进入需求广场,选取你擅长的领域开始上传资源、获取流量吧!2022.7.12上线需求词:No.需求词No.需求词No.需求词1超分辨率重建95idea快捷键189pid调参2视频编解码96linux切换到root用户190openmv与arduino串口通信3fpga开发97c++编译器191git教程4浏览器插件98springboot注解192matlab解多项式方程5tomcat安装及配置教程
- 【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程
RS迷途小书童
Python深度学习超分辨率重建计算机视觉人工智能深度学习图像处理
1前言图像超分是一种图像处理技术,旨在提高图像的分辨率,使其具有更高的清晰度和细节。这一技术通常用于图像重建、图像恢复、图像增强等领域,可以帮助我们更好地理解和利用图像信息。图像超分技术可以通过多种方法实现,包括插值算法、深度学习等。其中,深度学习的方法在近年来得到了广泛的关注和应用。基于深度学习的图像超分技术,可以利用深度神经网络学习图像的高频部分,从而提高了图像的分辨率和清晰度。目前应用较多的
- 【图像超分辨率重建】——EnhanceNet论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建计算机视觉人工智能
2017-EnhanceNet:SingleImageSuper-ResolutionThroughAutomatedTextureSynthesis(EnhanceNet)基本信息作者:MehdiS.M.SajjadiBernhardSch¨olkopfMichaelHirsch期刊:ICCV引用:*摘要:单一图像超分辨率是指从单一低分辨率输入推断出高分辨率图像的任务。传统上,这项任务的算法性能
- 基于深度学习的图像超分辨率重建
wjhua_223
#超分辨率人工智能技术方向
最近开展图像超分辨率(ImageSuperResolution)方面的研究,做了一些列的调研,并结合本人的理解总结成本博文~(本博文仅用于本人的学习笔记,不做商业用途)本博文涉及的paper已经打包,供各位看客下载哈~https://download.csdn.net/download/gwplovekimi/10728916目录超分辨率(SuperResolution,SR)传统的图像超分辨率重
- 基于多尺度分形残差注意力网络的超分辨率重建算法
Van-bo
1024程序员节
1.引言深度神经网络可以显著提高超分辨率的质量,但现有方法难以充分利用低分辨率尺度特征和通道信息,从而阻碍了卷积神经网络的表达能力。针对此类问题,本章提出了一种多尺度分形残差注意力网络(Multi-scaleFractalResidualAttentionNetwork,MFRAN)。具体而言,MFRAN由分形残差块(FractalResidualBlock,FRB)、双路增强通道注意力(Dual
- 超分辨率重建数据集制作:生成低分辨率数据集
Alocus_
python超分辨率重建超分辨率重建人工智能图像处理
目录背景代码结果其他注意:超分主流有两种BI、BD。1.实际上公认的是使用MATLAB进行插值。2.Bicubic(双三次插值)方式。(BI方式)3.高斯模糊+双三次插值是另一种常用方式(BD方式)。4.目前有使用Python实现的上述BI、BD,但或多或少还是有差异。这里python实现必定和matlab实现之间有差别,使用时注意。(希望你务必看一下这一篇文章:图像/视频超分之降质过程)(我写一
- AI影像修复及图像超分辨率
理想失速
计算机视觉人工智能
AI图像修复软件主要包含人脸修复、图像超分等功能。人脸修复功能主要对图像上的人脸进行识别和修复,从模糊、缺损、噪声图像中恢复高质量人脸图像。图像超分功能主要对图像进行超分辨率重建,将低分辨率图像处理为高分辨率图像。链接:https://pan.baidu.com/s/1epX3FKdTGNyTe0c8LoIPCQ?pwd=9knh1、人脸修复功能—>人脸修复,启动人脸修复界面。选择图像文件和输出路
- CVPR 2018
来自吐槽星
深度学习在图像超分辨率重建中的应用http://cvmart.net/community/article/detail/11使用CNN生成图像先验,实现更广泛场景的盲图像去模糊http://cvmart.net/community/article/detail/206用u-net训练一个模型:输入是一个静态的帧,输出的预测的五帧光流信息,模型在youtube数据集上训练。https://arxiv
- 【代码实践】HAT代码Window平台下运行实践记录
一的千分之一
【代码实践】python深度学习
HAT是CVPR2023上的自然图像超分辨率重建论文《activatingMorePixelsinImageSuper-ResolutionTransformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题,供大家参考。环境安装参考官方代码,进行环境安装pipinstall-rreq
- 深度学习在图像识别领域还有哪些应用?
matlabgoodboy
深度学习人工智能
深度学习在图像识别领域的应用非常广泛,除了之前提到的图像分类、目标检测、语义分割和图像生成,还有其他一些应用。图像超分辨率重建:深度学习技术可以用于提高图像的分辨率,例如通过使用生成对抗网络(GAN)和变分自编码器(VAE)等技术,可以将低分辨率的图像转换为高分辨率的图像,从而提高了图像的清晰度和质量。图像风格迁移:深度学习可以用于将一张图像的风格应用到另一张图像上,例如使用GAN模型可以将一张照
- 【论文阅读】ICCV2021|超分辨重建论文整理和阅读
一的千分之一
【论文阅读】transformer深度学习计算机视觉
本文主要对ICCV2021中超分辨率重建相关论文进行整理与阅读。1.LearningASingleNetworkforScale-ArbitrarySuper-ResolutionPaper:https://arxiv.org/pdf/2004.03791.pdfCode:https://github.com/The-Learning本论文聚焦于非整数尺度和非对称的SR问题,如上采样1.5x2.5
- AI数字人:语音驱动面部模型及超分辨率重建Wav2Lip-HD
智慧医疗探索者
AI数字人技术人工智能超分辨率重建图像处理深度学习
1Wav2Lip-HD项目介绍数字人打造中语音驱动人脸和超分辨率重建两种必备的模型,它们被用于实现数字人的语音和图像方面的功能。通过Wav2Lip-HD项目可以快速使用这两种模型,完成高清数字人形象的打造。项目代码地址:github地址1.1语音驱动面部模型wav2lip语音驱动人脸技术主要是通过语音信号处理和机器学习等技术,实现数字人的语音识别和语音合成,从而实现数字人的语音交互功能。同时,结合
- 【图像超分辨率重建】——SwinIR论文阅读笔记
沉潜于
超分辨率重建笔记人工智能
SwinIR:ImageRestorationUsingSwinTransformer基本信息:期刊:ICCV2021摘要:图像恢复是一个长期存在的低级视觉问题,其目的是从低质量图像(例如,缩小、噪声和压缩图像)。虽然最先进的图像恢复方法是基于卷积神经网络,但很少有人尝试使用Transformers,这些Transformers在高级视觉任务中表现出令人印象深刻的性能。在本文中,我们提出了一个强基
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>