- Sqoop安装部署
愿与狸花过一生
大数据sqoophadoophive
ApacheSqoop简介Sqoop(SQL-to-Hadoop)是Apache开源项目,主要用于:将关系型数据库中的数据导入Hadoop分布式文件系统(HDFS)或相关组件(如Hive、HBase)。将Hadoop处理后的数据导出回关系型数据库。核心特性批量数据传输支持从数据库表到HDFS/Hive的全量或增量数据迁移。并行化处理基于MapReduce实现并行导入导出,提升大数据量场景的效率。自
- mysql总结
tianyunlinger
大数据mysql数据库
MySQL基础1.数据库基本介绍数据库定义:用于存储数据的仓库,通过SQL语句操作。数据库作用:存储应用程序中的数据,便于管理和查询。数据库分类:关系型数据库(如MySQL、Oracle、DB2)和非关系型数据库(如Redis、HBase)。关系型数据库:通过E-R图描述数据之间的关系,支持复杂查询。2.MySQL在Linux中的安装安装前准备:配置防火墙、创建统一的管理目录(如/export/s
- 如果企业数据仓库全部使用 Couchbase Analytics 服务,可能会面临哪些问题?
PersistDZ
数据存储数据仓库
如果企业数据仓库全部使用CouchbaseAnalytics服务,可能会面临哪些问题?一、概述CouchbaseAnalytics服务是一项强大的工具,旨在为NoSQL数据提供近实时的分析能力。然而,如果企业的数据仓库全部依赖于CouchbaseAnalytics服务,可能会遇到一些问题和挑战。以下将从多个角度详细分析这些可能的问题。二、可能的问题和挑战资源消耗和成本高资源需求:Couchbase
- Flume与Couchbase集成原理与实例
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Flume与Couchbase集成原理与实例作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,企业对数据存储和处理的效率要求越来越高。在数据采集、存储、处理和分析的各个环节,都需要高效、可靠的技术支持。Flume和Couchbase正是这样两种优秀的工具,前者擅长于数据采集和传输,后者擅长于键值存储和文
- Couchbase Analytics 的结构
PersistDZ
数据存储couchbase
CouchbaseAnalytics的结构CouchbaseAnalytics服务专为大规模、并发、复杂的分析查询而设计,同时不会影响事务性工作负载的性能。下面将详细介绍其结构和架构,以帮助您深入理解CouchbaseAnalytics的运作方式。1.Couchbase集群架构CouchbaseServer是一个多维度可扩展的分布式数据库,其核心架构由多个服务组成:数据服务(DataService
- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- Hadoop相关面试题
努力的搬砖人.
java面试hadoop
以下是150道Hadoop面试题及其详细回答,涵盖了Hadoop的基础知识、HDFS、MapReduce、YARN、HBase、Hive、Sqoop、Flume、ZooKeeper等多个方面,每道题目都尽量详细且简单易懂:Hadoop基础概念类1.什么是Hadoop?Hadoop是一个由Apache基金会开发的开源分布式计算框架,主要用于处理和存储大规模数据集。它提供了高容错性和高扩展性的分布式存
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- java+redis+pipleline_详解Java使用Pipeline对Redis批量读写(hmset&hgetall)
666齐乐家园
一般情况下,RedisClient端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client。感觉这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端。在Redis中,有没有类似HBaseScannerCaching的东西呢,一次请求,返回多条记录呢?有,这就是Pipline。官方介绍ht
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 大数据学习(67)- Flume、Sqoop、Kafka、DataX对比
viperrrrrrr
大数据学习flumekafkasqoopdatax
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦工具主要作用数据流向实时性数据源/目标应用场景Flume实时日志采集与传输从数据源到存储系统实时日志文件、网络流量等→HDFS、HBase、Kafka等日志收集、实时监控、实时分析Sqoop关系型数据库与Hadoop间数据同步关系型数据库→Hadoop生态系统(HDFS、Hive、
- HBase学习二:HBase的表结构
hucs420109
HBaseHBase
HBase的表结构初次接触HBase,可能看到以下描述会懵:“基于列存储”,“稀疏MAP”,“RowKey”,“ColumnFamily”。其实没那么高深,我们需要分两步来理解HBase,就能够理解为什么HBase能够“快速地”“分布式地”处理“大量数据”了。内存结构文件存储结构先介绍几个名称概念行键RowKey:行键,类似mysql中的主键,Table中的记录按照RowKey排序,行键是表结构的
- 分布式存储—— HBase数据模型 详解
Future_yzx
分布式hbase数据库
目录1.3HBase数据模型1.3.1两类数据模型1.3.2数据模型的重要概念1.3.3数据模型的操作1.3.4数据模型的特殊属性1.3.5CAP原理与最终一致性1.3.6小结本文章参考、总结于学校教材课本《HBase开发与应用》1.3HBase数据模型在开始学习HBase之前非常有必要先学习HBase的特性,因此本节将介绍HBase的逻辑模型、物理模型和访问HBase的方法等。和传统的关系型数据
- 分布式存储学习——HBase表结构设计
Future_yzx
oracle数据库
目录1.4.1模式创建1.4.2Rowkey设计1.4.3列族定义1.4.3.1可配置的数据块大小1.4.3.2数据块缓存1.4.3.3布隆过滤器1.4.3.4数据压缩1.4.3.5单元时间版本1.4.3.6生存时间1.4.4模式设计实例1.4.4.1实例1:动物分类1.4.4.2实例2:店铺与商品1.4.4.3实例3:网上商城用户消费记录1.4.4.4实例4:微博用户与粉丝1.4.4.5小结本文
- HBase2.6.1部署文档
CXH728
zookeeperhbase
1、HBase概述ApacheHBase是基于Hadoop分布式文件系统(HDFS)之上的分布式、列存储、NoSQL数据库。它适合处理结构化和半结构化数据,能够存储数十亿行和数百万列的数据,并支持实时读写操作。HBase通常应用于需要快速随机读写、低延迟访问以及高吞吐量的场景,例如大规模日志处理、社交网络数据存储等。HBase特性列存储模型:HBase的数据是按列族存储的,适合高稀疏数据。行键分区
- 使用Couchbase中的向量搜索进行智能查询
eahba
python
技术背景介绍Couchbase是一种强大的分布式NoSQL数据库,广泛应用于云、移动、AI和边缘计算应用中。其向量搜索功能,作为全文搜索服务的一部分,支持在应用中进行高效的语义查询。这为开发者在实现AI驱动的应用时提供了极大的便利。核心原理解析Couchbase的向量搜索利用向量嵌入技术对文本进行处理,可以实现基于语义相似度的查询。这与传统的关键词匹配有根本的不同,更适合AI应用场景中模糊或语义相
- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- phoenix无法连接hbase shell创建表失败_报错_PleaseHoldException: Master is initializing---记录020_大数据工作笔记0180
添柴程序猿
hbase连接报错phoenix连接hbasephoenixPleaseHoldExcep
今天发现,我的phoenix,去连接hbase集群,怎么也连不上了,奇怪了...弄了一晚上org.apache.hadoop.hbase.PleaseHoldException:Masterisinitializing[root@hadoop120bin]#ll总用量184-rwxr-xr-x.1rootroot36371月222020chaos-daemon.sh-rwxr-xr-x.1root
- regionserver实例僵住问题分析
spring208208
hbasehbase
问题现象:应用提交超时,发现regionserver实例异常。hbase原生页面这个实例dead,业务连接到这个rs的进程超时8个regionserver实例。D08在18:30分后显示warning,应用提交任务到这个rs节点超时,hbase控制台不显示d08的rs信息了。19:30在页面停止rs实例失败,然后kill进程。18:30统计图等就不刷新了,但是机器里rs进程在。d08节点还有dn,
- hbase 默认目录_[HBase] HBase数据存储目录解析
weixin_39577422
hbase默认目录
Hbase在hdfs上的存储位置,根目录是由配置项hbase.rootdir决定,默认就是"/hbase"/hbase/WALs在该目录下,对于每个RegionServer,都会对应1~n个子目录/hbase/oldWALs当/hbase/WALs中的HLog文件被持久化到存储文件时,它们就会被移动到/hbase/oldWALs/hbase/hbase.id集群的唯一ID/hbase/hbase.
- hbase-05 namespace、数据的确界&TTL
小技工丨
大数据技术学习hbase数据库大数据
要点掌握HBase的命名空间namespace概念掌握HBase数据版本确界掌握HBase数据TTL1.HBase的namespace1.1namespace基本介绍在HBase中,namespace命名空间指对一组表的逻辑分组,类似RDBMS中的database,方便对表在业务上划分。ApacheHBase从0.98.0,0.95.2两个版本号开始支持namespace级别的授权操作,HBase
- Hbase在hdfs上的archive目录占用空间过大
宝罗Paul
大数据hbase
hbase版本:1.1.2hadoop版本:2.7.3Hbase在hdfs上的目录/apps/hbase/data/archive占用空间过大,导致不停地发出hdfs空间使用率告警。【问题】告警信息alert:datanode_storageistriggered告警信息表明某个或某些datanode的HDFS存储空间使用率已超过阈值(我们设置的是80%),需要清理。[hdfs@master-2r
- hbase集群archive目录过大问题处理
spring208208
大数据组件线上问题分析hbase数据库大数据
1.问题现象现场反馈hbase集群/hbase/archive目录过大,大小约为1.52PB现场集群已经清理掉2个月以前的snapshot文件,当前archive目录文件仍不能释放现场发现1T以上的archive子目录有211个查看集群hbase配置,hmaster堆栈大小20GB,hmaster清理周期5分钟查看hmaster进程分配内存占用6G上下问题分析HMaster内存估算,假如/hbas
- Flume-HBase-Kafka
正在緩沖҉99%
kafkaFlumeHBase大数据
Flume-HBase-Kafka一、各自介绍1.Flume简介和特征2.HBase简介和特征3.Kafka简介和特征二、通过Flume读取日志文件写入到Kafka中在写入HBase各自作用一、各自介绍1.Flume简介和特征一、简介Flume是一个分布式、可靠、和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- value error
wqq奋斗的小鸟
pyspark
ValueError:invalidliteralforint()withbase10:''int()函数只能转化数字组成的字符串
- 如何使用Spark Streaming将数据写入HBase
Java资深爱好者
sparkhbase大数据
在SparkStreaming中将数据写入HBase涉及到几个步骤。以下是一个基本的指南,帮助你理解如何使用SparkStreaming将数据写入HBase。1.环境准备HBase:确保HBase集群已经安装并运行。Spark:确保Spark已经安装,并且Spark版本与HBase的Hadoop版本兼容。HBaseConnectorforSpark:你需要使用HBase的SparkConnecto
- 华为MRS产品组件
QianJin_zixuan
hadoophive大数据数据库架构gaussdb
MRS:MRS是一个在华为云上部署和管理Hadoop系统的服务,一键即可部署Hadoop集群。MRS提供租户完全可控的一站式企业级大数据集群云服务(全栈大数据平台),轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。集群管理:使用MRS的首要操作就是购买集群,MRS的扩容不论在存储还是计算能力上,都可以简单地通过增加Core节点或者Task节点来完成。集群Core节
- HBase:大数据时代的“超级数据库”
狮歌~资深攻城狮
hbase大数据
HBase:大数据时代的“超级数据库”你是不是也被数据淹没过?大家有没有这样的经历,手机里存了成千上万张照片,每次想找某一张特定的照片时,都得翻半天?或者在工作中面对堆积如山的数据报表,感觉像是在大海捞针。今天我们要聊的HBase,就是为了解决这种“数据洪流”的问题。什么是HBase?HBase是一个分布式的、面向列的开源数据库,它基于Google的Bigtable论文设计而成。简单来说,HBas
- HBase常用的Filter过滤器操作
梵高的夏天
python算法机器学习
HBase常用的Filter过滤器操作_hbasefilter-CSDN博客HBase过滤器种类很多,我们选择8种常用的过滤器进行介绍。为了获得更好的示例效果,先利用HBaseShell新建students表格,并往表格中进行写入多行数据。一、数据准备工作(1)在默认命名空间中新建表格students,设置列族info、score。hbase:002:0>create'students','inf
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><