微分中值定理习题技巧收集与整理

文章目录

  • 积分中值定理
    • 习题收集
      • 大学教材全解高等数学 延边大学出版社
      • 高等数学学习辅导讲义 浙江大学出版社
      • 数学强化通关330题(数学一)西安交通大学出版社
      • 数学分析中的典型问题与方法 高等教育出版社

积分中值定理

习题收集

大学教材全解高等数学 延边大学出版社

1.设 a > b > 0 a>b>0 a>b>0,证明 a − b a < ln ⁡ a b < a − b b \frac{a-b}{a}<\ln\frac{a}{b}<\frac{a-b}{b} aab<lnba<bab

构造辅助函数 f ( x ) = ln ⁡ ( x ) f(x)=\ln(x) f(x)=ln(x),则 f ( x ) f(x) f(x) [ b , a ] [b,a] [b,a]上连续,在 ( b , a ) (b,a) (b,a)内可导,则 f ( x ) = ln ⁡ x f(x)=\ln x f(x)=lnx [ b , a ] [b,a] [b,a]上满足拉格朗日中值定理的条件,故至少存在一点 ξ ∈ ( b , a ) \xi\in(b,a) ξ(b,a),使得 f ( a ) − f ( b ) a − b = f ′ ( ξ ) \frac{f(a)-f(b)}{a-b}=f^{\prime}(\xi) abf(a)f(b)=f(ξ),即
ln ⁡ a − ln ⁡ b a − b = 1 ξ \frac{\ln a-\ln b}{a-b}=\frac{1}{\xi} ablnalnb=ξ1
因为 1 a < 1 ξ < 1 b \frac{1}{a}<\frac{1}{\xi}<\frac{1}{b} a1<ξ1<b1,所以 1 a < ln ⁡ a − ln ⁡ b a − b < 1 b \frac{1}{a}<\frac{\ln a-\ln b}{a-b}<\frac{1}{b} a1<ablnalnb<b1,即
a − b a < ln ⁡ a b < a − b b \frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b} aab<lnba<bab
2.证明不等式 x 1 + x 2 < arctan ⁡ x < x ( x > 0 ) \frac{x}{1+x^2}<\arctan x0) 1+x2x<arctanx<x(x>0)

做辅助函数 f ( x ) = arctan ⁡ x ( x > 0 ) f(x)=\arctan x(x>0) f(x)=arctanx(x>0),因 f ( x ) f(x) f(x) [ 0 , x ] [0,x] [0,x]上满足拉格朗日中值定理条件,因此有 f ( x ) − f ( 0 ) = f ′ ( ξ ) ( x − 0 ) , ξ ∈ ( 0 , x ) f(x)-f(0)=f^{\prime}(\xi)(x-0),\xi\in(0,x) f(x)f(0)=f(ξ)(x0),ξ(0,x)

arctan ⁡ x − arctan ⁡ 0 = x 1 + ξ 2 \arctan x-\arctan 0=\frac{x}{1+\xi^2} arctanxarctan0=1+ξ2x
亦即
arctan ⁡ x = x 1 + ξ 2 \arctan x= \frac{x}{1+\xi^2} arctanx=1+ξ2x
0 < ξ < x 0<\xi0<ξ<x,有 1 1 + x 2 < 1 1 + ξ 2 < 1 \frac{1}{1+x^2}<\frac{1}{1+\xi^2}<1 1+x21<1+ξ21<1,所以可得
x 1 + x 2 < arctan ⁡ x < x ( x > 0 ) \frac{x}{1+x^2}<\arctan x0) 1+x2x<arctanx<x(x>0)

3.已知函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]连续,在 ( 0 , 1 ) (0,1) (0,1)上可导,且 f ( 0 ) = 1 , f ( 1 ) = 1 f(0)=1,f(1)=1 f(0)=1,f(1)=1,证明:

  1. 存在 ξ ∈ ( 0 , 1 ) \xi \in(0,1) ξ(0,1),使得 f ( ξ ) = 1 − ξ f(\xi)=1-\xi f(ξ)=1ξ
  2. 存在两个不同的点 η , ξ ∈ ( 0 , 1 ) \eta,\xi\in(0,1) η,ξ(0,1),使得
    f ′ ( η ) f ′ ( ξ ) = 1 f^{\prime}(\eta)f^{\prime}(\xi)=1 f(η)f(ξ)=1

( 1 ) (1) (1) F ( x ) = f ( x ) − 1 + x F(x)=f(x)-1+x F(x)=f(x)1+x,有 F ( x ) F(x) F(x) [ 0 , 1 ] [0,1] [0,1]上连续,且
F ( 0 ) = f ( 0 ) − 1 = − 1 < 0 F(0)=f(0)-1=-1<0 F(0)=f(0)1=1<0

F ( 1 ) = f ( 1 ) − 1 + 1 = f ( 1 ) = 1 > 0 F(1)=f(1)-1+1=f(1)=1>0 F(1)=f(1)1+1=f(1)=1>0
F ( 0 ) F ( 1 ) < 0 F(0)F(1)<0 F(0)F(1)<0,于是由介值定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1),使得 F ( ξ ) = 0 F(\xi)=0 F(ξ)=0,即 f ( ξ ) = 1 − ξ f(\xi)=1-\xi f(ξ)=1ξ
( 2 ) f ( x ) (2)f(x) (2)f(x) [ 0 , ξ ] [0,\xi] [0,ξ] [ ξ , 1 ] [\xi,1] [ξ,1]上分别应用拉格朗日中值定理知,存在两个不同的点 η ∈ ( 0 , ξ ) , ζ ∈ ( ξ , 1 ) \eta\in(0,\xi),\zeta\in(\xi,1) η(0,ξ),ζ(ξ,1),使得
f ′ ( η ) = f ( ξ ) − f ( 0 ) ξ − 0 = ( 1 − ξ ) − 0 ξ = 1 − ξ ξ f^{\prime}(\eta)=\frac{f(\xi)-f(0)}{\xi-0}=\frac{(1-\xi)-0}{\xi}=\frac{1-\xi}{\xi} f(η)=ξ0f(ξ)f(0)=ξ(1ξ)0=ξ1ξ
f ′ ( ζ ) = f ( 1 ) − f ( ξ ) 1 − ξ = 1 − ( 1 − ξ ) 1 − ξ = ξ 1 − ξ f^{\prime}(\zeta)=\frac{f(1)-f(\xi)}{1-\xi}=\frac{1-(1-\xi)}{1-\xi}=\frac{\xi}{1-\xi} f(ζ)=1ξf(1)f(ξ)=1ξ1(1ξ)=1ξξ
于是
f ′ ( η ) f ′ ( ζ ) = 1 − ξ ξ ⋅ ξ 1 − ξ = 1 f^{\prime}(\eta) f^{\prime}(\zeta)= \frac{1-\xi}{\xi}\cdot \frac{\xi}{1-\xi}=1 f(η)f(ζ)=ξ1ξ1ξξ=1

高等数学学习辅导讲义 浙江大学出版社

4.设 f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上存在二阶导数,并且 g ′ ′ ( x ) ≠ 0 g^{\prime\prime}(x)\neq0 g(x)=0 f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 f(a)=f(b)=g(a)=g(b)=0 f(a)=f(b)=g(a)=g(b)=0
试证: ( 1 ) (1) (1) ( a , b ) (a,b) (a,b)内, g ( x ) ≠ 0 g(x)\neq0 g(x)=0 ( 2 ) (2) (2) ( a , b ) (a,b) (a,b)内,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac {f^{\prime\prime}(\xi)}{g^{\prime\prime}(\xi)} g(ξ)f(ξ)=g(ξ)f(ξ)
证明
( 1 ) (1) (1)用反证法。假设存在 x 0 ∈ ( a , b ) x_0\in(a,b) x0(a,b),使 g ( x 0 ) = 0 g(x_0)=0 g(x0)=0
g ( x ) g(x) g(x) [ a , x 0 ] [a,x_0] [a,x0]上满足罗尔定理条件,至少存在一点 c 1 ∈ ( a , x 0 ) c_1\in(a,x_0) c1(a,x0),使 g ′ ( c 1 ) = 0 g^{\prime}(c_1)=0 g(c1)=0
g ( x ) g(x) g(x) [ x 0 , b ] [x_0,b] [x0,b]上满足罗尔定理条件,至少存在一点 c 2 ∈ ( x 0 , b ) c_2\in(x_0,b) c2(x0,b),使 g ′ ( c 2 ) = 0 g^{\prime}(c_2)=0 g(c2)=0
g ′ ( x ) g^{\prime}(x) g(x) [ c 1 , c 2 ] [c_1,c_2] [c1,c2]上满足罗尔定理条件,至少存在一点 c ∈ ( c 1 , c 2 ) c\in(c_1,c_2) c(c1,c2),使 g ′ ′ ( c ) = 0 g^{\prime\prime}(c)=0 g(c)=0
与对每一个 x ∈ ( a , b ) , g ′ ′ ( x ) ≠ 0 x\in(a,b),g^{\prime\prime}(x)\neq0 x(a,b),g(x)=0相矛盾,所以假设不成立,即 ∀ x ∈ ( a , b ) , g ( x ) ≠ 0 \forall x\in(a,b),g(x)\neq0 x(a,b),g(x)=0
( 2 ) (2) (2)要证 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac {f^{\prime\prime}(\xi)}{g^{\prime\prime}(\xi)} g(ξ)f(ξ)=g(ξ)f(ξ)成立,由 g ( x ) ≠ 0 , g ′ ′ ( x ) ≠ 0 g(x)\neq 0, g^{\prime\prime}(x)\neq 0 g(x)=0,g(x)=0,只要证 f ( ξ ) g ′ ′ ( ξ ) − g ( ξ ) f ′ ′ ( ξ ) = 0 f(\xi) g^{\prime\prime}(\xi)-g(\xi) f^{\prime\prime}(\xi) =0 f(ξ)g(ξ)g(ξ)f(ξ)=0成立,只要证 [ f ( x ) g ′ ′ ( x ) − g ( x ) f ′ ′ ( x ) ] ∣ x = ξ = 0 \left.\left[f(x) g^{\prime\prime}(x)-g(x) f^{\prime\prime}(x) \right]\right|_{x=\xi}=0 [f(x)g(x)g(x)f(x)]x=ξ=0成立,只要证 ( f ( x ) g ′ ( x ) − g ( x ) f ′ ( x ) ) ′ ∣ x = ξ = 0 \left.\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x) \right)^{\prime}\right|_{x=\xi}=0 (f(x)g(x)g(x)f(x))x=ξ=0成立,设 F ( x ) = f ( x ) g ′ ( x ) − g ( x ) f ′ ( x ) F(x)= f(x) g^{\prime}(x) -g(x) f^{\prime}(x) F(x)=f(x)g(x)g(x)f(x),只要证
F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0成立, F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,由罗尔定理知,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0成立

5.设 f ( x ) f\left( x \right) f(x) [ a , b ] \left[ a,b \right] [a,b]上具有二阶导数,且 f ( a ) = f ( b ) = 0 f\left( a \right) =f\left( b \right) =0 f(a)=f(b)=0 f ′ ( a ) f ′ ( b ) > 0 f^{\prime}\left( a \right) f^{\prime}\left( b \right) >0 f(a)f(b)>0。证明:存在 ξ ∈ ( a , b ) \xi \in \left( a,b \right) ξ(a,b) η ∈ ( a , b ) \eta \in \left( a,b \right) η(a,b),使 f ( ξ ) = 0 f\left( \xi \right) =0 f(ξ)=0, f ′ ′ ( η ) = 0 f^{\prime\prime}\left( \eta \right) =0 f(η)=0
证明
f ′ ( a ) f ′ ( b ) > 0 f^{\prime}\left( a \right) f^{\prime}\left( b \right) >0 f(a)f(b)>0,不妨设 f ′ ( a ) > 0 , f ′ ( b ) > 0 f^{\prime}(a)>0,f^{\prime}(b)>0 f(a)>0,f(b)>0,由于 lim ⁡ x → a + f ( x ) − f ( a ) x − a = lim ⁡ x → a + f ( x ) x − a = f ′ ( a ) > 0 \lim\limits_{x \to a^+}{\frac{f(x)-f(a)}{x-a}}= \lim\limits_{x \to a^+}{\frac{f(x)}{x-a}}=f^{\prime}(a)>0 xa+limxaf(x)f(a)=xa+limxaf(x)=f(a)>0,由保号性,存在 δ 1 > 0 \delta_1>0 δ1>0,当 x ∈ ( a , a + δ 1 ) x\in(a,a+\delta_1) x(a,a+δ1)时, f ( x ) x − a > 0 \frac{f(x)}{x-a}>0 xaf(x)>0,而 x − a > 0 x-a>0 xa>0,知 f ( x ) > 0 f(x)>0 f(x)>0,取 a 1 ∈ ( a , a + δ 1 ) , f ( a 1 ) > 0 a_1\in(a,a+\delta_1),f(a_1)>0 a1(a,a+δ1),f(a1)>0

lim ⁡ x → b − f ( x ) − f ( b ) x − b = lim ⁡ x → b − f ( x ) x − b = f ′ ( b ) > 0 \lim\limits_{x \to b^-}{\frac{f(x)-f(b)}{x-b}}= \lim\limits_{x \to b^-}{\frac{f(x)}{x-b}}=f^{\prime}(b)>0 xblimxbf(x)f(b)=xblimxbf(x)=f(b)>0,由保号性,存在 δ 2 > 0 ( a 1 < b − δ 2 ) \delta_2>0(a_1δ2>0(a1<bδ2),当 x ∈ ( b − δ 2 , b ) x\in(b-\delta_2,b) x(bδ2,b)时, f ( x ) x − b > 0 \frac{f(x)}{x-b} >0 xbf(x)>0,而 x − b < 0 x-b<0 xb<0,知 f ( x ) < 0 f(x)<0 f(x)<0,取 b 1 ∈ ( b − δ 2 , b ) , f ( b 1 ) < 0 b_1\in (b-\delta_2,b) ,f(b_1)<0 b1(bδ2,b),f(b1)<0 f ( x ) f(x) f(x) [ a 1 , b 1 ] [a_1,b_1] [a1,b1]上满足根的存在定理条件,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0
f ( x ) f(x) f(x) [ a , ξ ] [a,\xi] [a,ξ]上满足罗尔定理,至少存在一点 c 1 ∈ ( a , ξ ) c_1\in(a,\xi) c1(a,ξ),使 f ′ ( c 1 ) = 0 f^{\prime}(c_1)=0 f(c1)=0
f ( x ) f(x) f(x) [ ξ , b ] [\xi,b] [ξ,b]上满足罗尔定理,至少存在一点 c 2 ∈ ( ξ , b ) c_2\in(\xi,b) c2(ξ,b),使 f ′ ( c 2 ) = 0 f^{\prime}(c_2)=0 f(c2)=0
f ′ ( x ) f^{\prime}(x) f(x) [ c 1 , c 2 ] [c_1,c_2] [c1,c2]上满足罗尔定理,至少存在一点 η ∈ ( c 1 , c 2 ) ⊂ ( a , b ) \eta\in(c_1,c_2)\subset(a,b) η(c1,c2)(a,b),使 f ′ ′ ( η ) = 0 f^{\prime\prime}(\eta)=0 f(η)=0

6.设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)可导,证明在 f ( x ) f(x) f(x)的两个零值点之间必有函数 f ′ ( x ) + f ( x ) g ′ ( x ) f^{\prime}(x)+f(x)g^{\prime}(x) f(x)+f(x)g(x)的零值点。
证明
由题意知 ∃   x 1 < x 2 \exists \,x_1x1<x2,使 f ( x 1 ) = 0 , f ( x 2 ) = 0 f(x_1)=0,f(x_2)=0 f(x1)=0,f(x2)=0,要证明至少存在一点 ξ ∈ ( x 1 , x 2 ) \xi\in(x_1,x_2) ξ(x1,x2),使 f ′ ( ξ ) + f ( ξ ) g ′ ( ξ ) f^{\prime}(\xi)+f(\xi)g^{\prime}(\xi) f(ξ)+f(ξ)g(ξ)成立,由 e g ( ξ ) ≠ 0 e^{g(\xi)}\neq 0 eg(ξ)=0,只要证 [ f ′ ( ξ ) + f ( ξ ) g ′ ( ξ ) ] e g ( ξ ) = 0 \left[f^{\prime}(\xi)+f(\xi)g^{\prime}(\xi)\right]e^{g(\xi)}=0 [f(ξ)+f(ξ)g(ξ)]eg(ξ)=0成立,只要证 [ f ′ ( x ) e g ( x ) + f ( x ) g ′ ( x ) e g ( x ) ] ∣ x = ξ = 0 \left.\left[f^{\prime}(x)e^{g(x)}+f(x)g^{\prime}(x)e^{g(x)}\right]\right|_{x=\xi}=0 [f(x)eg(x)+f(x)g(x)eg(x)]x=ξ=0成立,只要证 [ f ( x ) e g ( x ) ] ′ ∣ x = ξ = 0 \left.[f(x)e^{g(x)}]^{\prime}\right|_{x=\xi}=0 [f(x)eg(x)]x=ξ=0成立,设 F ( x ) = f ( x ) e g ( x ) F(x)=f(x)e^{g(x)} F(x)=f(x)eg(x),只要证
F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0
成立, F ( x ) F(x) F(x) [ x 1 , x 2 ] [x_1,x_2] [x1,x2]上连续,在 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)内可导, F ( x 1 ) = F ( x 2 ) = 0 F(x_1)=F(x_2)=0 F(x1)=F(x2)=0,由罗尔定理知,至少存在一点 ξ ∈ ( x 1 , x 2 ) \xi\in(x_1,x_2) ξ(x1,x2),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0

7.若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上可导,且 g ′ ( x ) ≠ 0 g^{\prime}(x)\neq 0 g(x)=0,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使
f ( a ) − f ( ξ ) g ( ξ ) − g ( b ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(a)-f(\xi)}{g(\xi)-g(b)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} g(ξ)g(b)f(a)f(ξ)=g(ξ)f(ξ)
证明
要证结论成立,只要证 [ f ( a ) − f ( ξ ) ] g ′ ( ξ ) − [ g ( ξ ) − g ( b ) ] f ′ ( ξ ) = 0 \left[f(a)-f(\xi)\right]g^{\prime}(\xi)-[g(\xi)-g(b)]f^{\prime}(\xi)=0 [f(a)f(ξ)]g(ξ)[g(ξ)g(b)]f(ξ)=0成立,只要证 { [ f ( a ) − f ( x ) ] g ′ ( x ) − [ g ( x ) − g ( b ) ] f ′ ( x ) } x = ξ = 0 \left\{[f(a)-f(x)]g^{\prime}(x)-[g(x)-g(b)]f^{\prime}(x)\right\}_{x=\xi}=0 {[f(a)f(x)]g(x)[g(x)g(b)]f(x)}x=ξ=0成立,只要证 { [ f ( a ) − f ( x ) ] [ g ( x ) − g ( b ) ] } ′ ∣ x = ξ = 0 \left. \left\{[f(a)-f(x)][g(x)-g(b)]\right\}^{\prime}\right|_{x=\xi}=0 {[f(a)f(x)][g(x)g(b)]}x=ξ=0成立,令 F ( x ) = [ f ( a ) − f ( x ) ] [ g ( x ) − g ( b ) ] F(x)= [f(a)-f(x)][g(x)-g(b)] F(x)=[f(a)f(x)][g(x)g(b)],只要证 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0
成立, F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导, F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,由罗尔定理知,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0

8.设 f ( x ) f(x) f(x)在闭区间 [ x 1 , x 2 ] [x_1,x_2] [x1,x2]上可微,并且 x 1 x 2 > 0 x_1x_2>0 x1x2>0,证明:在 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)内至少存在一点 ξ \xi ξ,使
1 x 1 − x 2 ∣ x 1 x 2 f ( x 1 ) f ( x 2 ) ∣ = f ( ξ ) − ξ f ′ ( ξ ) \frac{1}{x_1-x_2}\begin{vmatrix}x_1&x_2\\f(x_1)&f(x_2)\end{vmatrix}=f(\xi)-\xi f^{\prime}(\xi) x1x21x1f(x1)x2f(x2)=f(ξ)ξf(ξ)
证明
要证原等式成立,只要证 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 1 − x 2 = f ( ξ ) − ξ f ′ ( ξ ) \frac{x_1f(x_2)-x_2f(x_1)}{x_1-x_2}=f(\xi)-\xi f^{\prime}(\xi) x1x2x1f(x2)x2f(x1)=f(ξ)ξf(ξ)成立,由 x 1 x 2 > 0 x_1x_2>0 x1x2>0,知 x 1 ≠ 0 , x 2 ≠ 0 x_1\neq 0,x_2\neq0 x1=0,x2=0,只要证
f ( x 2 ) x 2 − f ( x 1 ) x 1 1 x 2 − 1 x 1 = f ( ξ ) − ξ f ′ ( ξ ) \frac{\frac{f(x_2)}{x_2}-\frac{f(x_1)}{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=f(\xi)-\xi f^{\prime}(\xi) x21x11x2f(x2)x1f(x1)=f(ξ)ξf(ξ)
成立。设 F ( x ) = f ( x ) x F(x)=\frac{f(x)}{x} F(x)=xf(x) G ( x ) = 1 x G(x)=\frac{1}{x} G(x)=x1 F ′ ( x ) = f ′ ( x ) x − f ( x ) x 2 F^{\prime}(x)=\frac{f^{\prime}(x)x-f(x)}{x^2} F(x)=x2f(x)xf(x) G ′ ( x ) = − 1 x 2 G^{\prime}(x)=-\frac{1}{x^2} G(x)=x21,由 x 1 x 2 > 0 x_1x_2>0 x1x2>0,知 x 1 , x 2 x_1,x_2 x1,x2同号,知 0 ∉ [ x 1 , x 2 ] 0\not\in[x_1,x_2] 0[x1,x2],故 F ( x ) , G ( x ) F(x),G(x) F(x),G(x) [ x 1 , x 2 ] [x_1,x_2] [x1,x2]上满足柯西定理条件,有
f ( x 2 ) x 2 − f ( x 1 ) x 1 1 x 2 − 1 x 1 = F ( x 2 ) − F ( x 1 ) G ( x 2 ) − G ( x 1 ) = F ′ ( ξ ) G ′ ( ξ ) = f ′ ( ξ ) ξ − f ( ξ ) ξ 2 − 1 / ξ 2 = f ( ξ ) − ξ f ′ ( ξ ) \frac{\frac{f(x_2)}{x_2}-\frac{f(x_1)}{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=\frac{F(x_2)-F(x_1)}{G(x_2)-G(x_1)}=\frac{F^{\prime}(\xi)}{G^{\prime}(\xi)}=\frac{\frac{f^{\prime}(\xi)\xi-f(\xi)}{\xi^2}}{-1/\xi^2}=f(\xi)-\xi f^{\prime}(\xi) x21x11x2f(x2)x1f(x1)=G(x2)G(x1)F(x2)F(x1)=G(ξ)F(ξ)=1/ξ2ξ2f(ξ)ξf(ξ)=f(ξ)ξf(ξ)

9.设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ′ ( x ) ≠ 0 f^{\prime}(x)\neq 0 f(x)=0,证明存在 ξ , η ∈ ( a , b ) \xi,\eta\in(a,b) ξ,η(a,b),使得
f ′ ( ξ ) f ′ ( η ) = e b − e a b − a e − η \frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{e^b-e^a}{b-a}e^{-\eta} f(η)f(ξ)=baebeaeη
证明
要证原等式成立,只要证 f ′ ( ξ ) = e b − e a b − a ⋅ f ′ ( η ) e η f^{\prime}(\xi)= \frac{e^b-e^a}{b-a} \cdot\frac{f^{\prime}(\eta)}{e^{\eta}} f(ξ)=baebeaeηf(η)成立,由 f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) f(b)-f(a)=f^{\prime}(c)(b-a) f(b)f(a)=f(c)(ba),只要证
f ′ ( ξ ) f ( b ) − f ( a ) e b − e a = f ( b ) − f ( a ) b − a ⋅ f ′ ( η ) e η f^{\prime}(\xi)\frac{f(b)-f(a)}{e^b-e^a}=\frac{f(b)-f(a)}{b-a}\cdot\frac{f^{\prime}(\eta)}{e^{\eta}} f(ξ)ebeaf(b)f(a)=baf(b)f(a)eηf(η)
成立,由拉格朗日定理知存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使
f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)
再由 f ( x ) , e x f(x),e^x f(x),ex [ a , b ] [a,b] [a,b]上满足柯西定理的条件,知存在一点 η ∈ ( a , b ) \eta\in(a,b) η(a,b),使
f ( b ) − f ( a ) e b − e a = f ′ ( η ) e η \frac{f(b)-f(a)}{e^b-e^a}=\frac{f^{\prime}(\eta)}{e^{\eta}} ebeaf(b)f(a)=eηf(η)
两式相乘,原式得证

10.设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ( a ) = f ( b ) = 1 f(a)=f(b)=1 f(a)=f(b)=1,试证:存在 ξ , η ∈ ( a , b ) \xi,\eta\in(a,b) ξ,η(a,b),使得
e η − ξ [ f ( η ) + f ′ ( η ) ] = 1 e^{\eta-\xi}[f(\eta)+f^{\prime}(\eta)]=1 eηξ[f(η)+f(η)]=1
证明
要证原等式成立,只要证
e η [ f ( η ) + f ′ ( η ) ] = e ξ e^{\eta}[f(\eta)+f^{\prime}(\eta)]=e^{\xi} eη[f(η)+f(η)]=eξ
成立,由 F ( x ) = e x f ( x ) F(x)=e^xf(x) F(x)=exf(x) [ a , b ] [a,b] [a,b]上满足拉格朗日定理条件,有 e b f ( b ) − e a f ( a ) b − a = F ′ ( η ) = e η [ f ( η ) + f ′ ( η ) ] \frac{e^bf(b)-e^af(a)}{b-a}=F^{\prime}(\eta)=e^{\eta}[f(\eta)+f^{\prime}(\eta)] baebf(b)eaf(a)=F(η)=eη[f(η)+f(η)] a < η < b a<\etaa<η<b,又应用拉格朗日定理知 e b f ( b ) − e a f ( a ) b − a = e b − a a b − a = e ξ \frac{e^bf(b)-e^af(a)}{b-a}=\frac{e^b-a^a}{b-a}=e^{\xi} baebf(b)eaf(a)=baebaa=eξ a < ξ < b a<\xia<ξ<b。原式成立。

11.设函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,且 f ( 0 ) = f ( 1 ) = 0 f(0)=f(1)=0 f(0)=f(1)=0 f ( 1 2 ) = 1 f\left(\frac{1}{2}\right)=1 f(21)=1,试证:
( 1 ) (1) (1)存在 η ∈ ( 1 2 , 1 ) \eta\in\left(\frac{1}{2},1\right) η(21,1),使 f ( η ) = η f(\eta)=\eta f(η)=η ( 2 ) (2) (2)对任意实数 ξ \xi ξ,存在 ξ ∈ ( 0 , η ) \xi\in(0,\eta) ξ(0,η),使得 f ′ ( ξ ) − λ [ f ( ξ ) − ξ ] = 1 f^{\prime}(\xi)-\lambda[f(\xi)-\xi]=1 f(ξ)λ[f(ξ)ξ]=1
证明
( 1 ) (1) (1) φ ( x ) = f ( x ) − x \varphi(x)=f(x)-x φ(x)=f(x)x φ ( x ) \varphi(x) φ(x) [ 1 2 , 1 ] \left[\frac{1}{2},1\right] [21,1]上连续,
φ ( 1 ) = f ( 1 ) − 1 = − 1 < 0 , φ ( 1 2 ) = f ( 1 2 ) − 1 2 = 1 − 1 2 = 1 2 > 0 \varphi(1)=f(1)-1=-1<0,\varphi\left(\frac{1}{2}\right)=f\left(\frac{1}{2}\right)-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}>0 φ(1)=f(1)1=1<0,φ(21)=f(21)21=121=21>0
由根的存在定理知,至少存在一点 η ∈ ( 1 2 , 1 ) \eta\in\left(\frac{1}{2},1\right) η(21,1),使 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0
( 2 ) (2) (2)要证 f ′ ( ξ ) − λ [ f ( ξ ) − ξ ] = 1 f^{\prime}(\xi)-\lambda[f(\xi)-\xi]=1 f(ξ)λ[f(ξ)ξ]=1成立,只要证 f ′ ( ξ ) − 1 − λ [ f ( ξ ) − ξ ] = 0 f^{\prime}(\xi)-1-\lambda[f(\xi)-\xi]=0 f(ξ)1λ[f(ξ)ξ]=0成立,由 φ ( ξ ) = f ( ξ ) − ξ \varphi(\xi)=f(\xi)-\xi φ(ξ)=f(ξ)ξ φ ′ ( x ) = f ′ ( x ) − 1 \varphi^{\prime}(x)=f^{\prime}(x)-1 φ(x)=f(x)1 φ ′ ( ξ ) = f ′ ( ξ ) − 1 \varphi^{\prime}(\xi)=f^{\prime}(\xi)-1 φ(ξ)=f(ξ)1,只要证 φ ′ ( ξ ) − λ φ ( ξ ) = 0 \varphi^{\prime}(\xi)-\lambda\varphi(\xi)=0 φ(ξ)λφ(ξ)=0成立,只要证 [ φ ′ ( ξ ) − λ φ ( ξ ) ] e − λ ξ = 0 [\varphi^{\prime}(\xi)-\lambda\varphi(\xi)]e^{-\lambda\xi}=0 [φ(ξ)λφ(ξ)]eλξ=0成立,只要证 { [ φ ′ ( x ) − λ φ ( x ) ] e − λ x } ∣ x = ξ = 0 \left.\left\{[\varphi^{\prime}(x)-\lambda \varphi(x)]e^{-\lambda x}\right\}\right|_{x=\xi}=0 {[φ(x)λφ(x)]eλx}x=ξ=0成立,只要证 [ φ ( x ) e − λ x ] ′ ∣ x = ξ = 0 \left.\left[\varphi(x)e^{-\lambda x}\right]^{\prime}\right|_{x=\xi}=0 [φ(x)eλx]x=ξ=0成立,设 F ( x ) = φ ( x ) e − λ x F(x)= \varphi(x)e^{-\lambda x} F(x)=φ(x)eλx,则只要证

F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0

成立, F ( x ) F(x) F(x) [ 0 , η ] [0,\eta] [0,η]连续,在 ( 0 , η ) (0,\eta) (0,η)内可导, F ( 0 ) = 0 = F ( η ) F(0)=0=F(\eta) F(0)=0=F(η),由罗尔定理知,至少存在一点 ξ ∈ ( 0 , η ) \xi\in(0,\eta) ξ(0,η),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F(ξ)=0,原式得证。

12.设 f ( x ) f(x) f(x)二阶可导,且在 ( 0 , a ) (0,a) (0,a)内某点取到最大之外,对一切 x ∈ [ 0 , a ] x\in[0,a] x[0,a],都有 ∣ f ′ ′ ( x ) ∣ ≤ m ( m 为 常 数 ) \left|f^{\prime\prime}(x)\right|\leq m(m 为常数) f(x)m(m),证明: ∣ f ′ ( 0 ) ∣ + ∣ f ′ ( a ) ∣ ≤ a m \left|f^{\prime}(0)\right|+\left|f^{\prime}(a)\right|\leq am f(0)+f(a)am
证明
f ( x ) f(x) f(x) x 0 x_0 x0处取到最大值,且 x 0 ∈ ( 0 , a ) x_0\in(0,a) x0(0,a),知 f ( x 0 ) f(x_0) f(x0)为极大值又 f ′ ( x 0 ) f^{\prime}(x_0) f(x0)存在,由费马定理知 f ′ ( x 0 ) = 0 f^{\prime}(x_0)=0 f(x0)=0,于是
∣ f ′ ( 0 ) ∣ + ∣ f ′ ( a ) ∣ = ∣ f ′ ( x 0 ) − f ′ ( 0 ) ∣ + ∣ f ′ ( a ) − f ′ ( x 0 ) ∣ = ∣ f ′ ′ ( ξ 1 ) x 0 ∣ + ∣ f ′ ′ ( ξ 2 ) ( a − x 0 ) ∣ ≤ m x 0 + m ( a − x 0 ) = m a \begin{aligned} \left|f^{\prime}(0)\right|+\left|f^{\prime}(a)\right|&=\left|f^{\prime}(x_0)-f^{\prime}(0)\right|+ \left|f^{\prime}(a)-f^{\prime}(x_0)\right|\\&= \left|f^{\prime\prime}(\xi_1)x_0\right|+ \left|f^{\prime\prime}(\xi_2)(a-x_0)\right|\leq mx_0+m(a-x_0)=ma \end{aligned} f(0)+f(a)=f(x0)f(0)+f(a)f(x0)=f(ξ1)x0+f(ξ2)(ax0)mx0+m(ax0)=ma
13.设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,且 ∣ f ′ ( x ) ∣ < 1 |f^{\prime}(x)|<1 f(x)<1,又 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),证明:对任意 x 1 , x 2 ∈ [ 0 , 1 ] x_1,x_2\in[0,1] x1,x2[0,1],有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|<\frac{1}{2} f(x1)f(x2)<21
证明
不妨设 0 ≤ x 1 ≤ x 2 ≤ 1 0\leq x_1\leq x_2 \leq 1 0x1x21,当 x 2 − x 1 ≤ 1 2 x_2 -x_1\leq \frac{1}{2} x2x121时。由拉格朗日定理知 ∣ f ( x 1 ) − f ( x 2 ) ∣ = ∣ f ′ ( ξ 1 ) ( x 1 − x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|=|f^{\prime}(\xi_1)(x_1-x_2)|<\frac{1}{2} f(x1)f(x2)=f(ξ1)(x1x2)<21;当 x 2 − x 1 > 1 2 x_2-x_1>\frac{1}{2} x2x1>21时,则 0 ≤ x 1 + ( 1 − x 2 ) = 1 − ( x 2 − x 1 ) < 1 2 0\leq x_1+(1-x_2)=1-(x_2-x_1)<\frac{1}{2} 0x1+(1x2)=1(x2x1)<21;又 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),于是
∣ f ( x 1 ) − f ( x 2 ) ∣ = ∣ f ( x 1 ) − f ( 0 ) − ( f ( x 2 ) − f ( 1 ) ) ∣ ≤ ∣ f ( x 1 ) − f ( 0 ) ∣ + ∣ f ( 1 ) − f ( x 2 ) ∣ = ∣ f ′ ( ξ ) ∣ x 1 + ∣ f ′ ( ξ 2 ) ∣ ∣ 1 − x 2 ∣ < x 1 + ( 1 − x 2 ) < 1 2 \begin{aligned} \left|f(x_1)-f(x_2)\right|&=|f(x_1)-f(0)-(f(x_2)-f(1))|\leq |f(x_1)-f(0)|+|f(1)-f(x_2)|\\&=|f^{\prime}(\xi)|x_1+|f^{\prime}(\xi_2)||1-x_2|f(x1)f(x2)=f(x1)f(0)(f(x2)f(1))f(x1)f(0)+f(1)f(x2)=f(ξ)x1+f(ξ2)1x2<x1+(1x2)<21

x 1 , x 2 ∈ [ 0 , 1 ] x_1,x_2\in[0,1] x1,x2[0,1],则 ∣ f ( x 1 ) − f ( x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|<\frac{1}{2} f(x1)f(x2)<21

14.设 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上不是线性函数,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使 ∣ f ′ ( ξ ) ∣ > ∣ f ( b ) − f ( a ) b − a ∣ \left|f^{\prime}(\xi)\right|>\left|\frac{f(b)-f(a)}{b-a}\right| f(ξ)>baf(b)f(a)
证明
由题意知 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上不是线性函数,即不是直线,设
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a} (x-a) F(x)=f(x)f(a)baf(b)f(a)(xa)
已知 F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,且当 a < x < b aa<x<b时, f ( x ) ≢ 0 f(x)\not\equiv0 f(x)0(否则 f ( x ) ≡ 0 f(x)\equiv0 f(x)0,与 F ( x ) = f ( a ) + f ( b ) − f ( a ) b − a ( x − a ) F(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) F(x)=f(a)+baf(b)f(a)(xa)是线性函数矛盾),存在 c ∈ ( a , b ) c\in(a,b) c(a,b),使 F ( c ) ≠ 0 F(c)\neq 0 F(c)=0,不妨设 F ( c ) > 0 F(c)>0 F(c)>0,在区间 [ a , c ] [a,c] [a,c] [ c , b ] [c,b] [c,b]上分别应用拉格朗日定理,存在 ξ 1 ∈ ( a , c ) \xi_1\in(a,c) ξ1(a,c),使 F ′ ( ξ 1 ) = F ( c ) − F ( a ) c − a = F ( c ) c − a > 0 F^{\prime}(\xi_1)=\frac{F(c)-F(a)}{c-a}=\frac{F(c)}{c-a}>0 F(ξ1)=caF(c)F(a)=caF(c)>0; ξ 2 ∈ ( c , b ) \xi_2\in(c,b) ξ2(c,b),使 F ′ ( ξ 2 ) = F ( b ) − F ( c ) b − c = − F ( c ) b − c < 0 F^{\prime}(\xi_2)=\frac{F(b)-F(c)}{b-c}=-\frac{F(c)}{b-c}<0 F(ξ2)=bcF(b)F(c)=bcF(c)<0。因而
f ′ ( ξ 1 ) > f ( b ) − f ( a ) b − a f^{\prime}(\xi_1)>\frac{f(b)-f(a)}{b-a} f(ξ1)>baf(b)f(a)
f ′ ( ξ 2 ) < f ( b ) − f ( a ) b − a f^{\prime}(\xi_2)<\frac{f(b)-f(a)}{b-a} f(ξ2)<baf(b)f(a)
因此,当 f ( b ) − f ( a ) b − a ≥ 0 \frac{f(b)-f(a)}{b-a}\geq0 baf(b)f(a)0时, ∣ f ′ ( ξ 1 ) ∣ > ∣ f ( b ) − f ( a ) b − a ∣ |f^{\prime}(\xi_1)|>\left|\frac{f(b)-f(a)}{b-a}\right| f(ξ1)>baf(b)f(a)
f ( b ) − f ( a ) b − a < 0 \frac{f(b)-f(a)}{b-a}<0 baf(b)f(a)<0时, ∣ f ′ ( ξ 2 ) ∣ > ∣ f ( b ) − f ( a ) b − a ∣ |f^{\prime}(\xi_2)|>\left|\frac{f(b)-f(a)}{b-a}\right| f(ξ2)>baf(b)f(a)。得证

15.设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上二阶可导, f ′ ( a ) = f ′ ( b ) = 0 f^{\prime}(a)=f^{\prime}(b)=0 f(a)=f(b)=0,证明:至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使
∣ f ′ ′ ( ξ ) ∣ ≥ 4 ∣ f ( b ) − f ( a ) ( b − a ) 2 ∣ |f^{\prime\prime}(\xi)|\geq4\left|\frac{f(b)-f(a)}{(b-a)^2}\right| f(ξ)4(ba)2f(b)f(a)
证明
f ( x ) f(x) f(x) x = a , x = b x=a,x=b x=a,x=b处分别展成泰勒公式,得
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( ξ 1 ) 2 ! ( x − a ) 2 , a < ξ 1 < x f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime\prime}(\xi_1)}{2!}(x-a)^2,a<\xi_1f(x)=f(a)+f(a)(xa)+2!f(ξ1)(xa)2,a<ξ1<x
x = a + b 2 x=\frac{a+b}{2} x=2a+b代入上式,得
f ( a + b 2 ) = f ( a ) + f ′ ( ξ 1 ) 2 ! ( x − a ) 2 , a < ξ 1 < a + b 2 f\left(\frac{a+b}{2}\right)=f(a)+\frac{f^{\prime}(\xi_1)}{2!}(x-a)^2,a<\xi_1<\frac{a+b}{2} f(2a+b)=f(a)+2!f(ξ1)(xa)2,a<ξ1<2a+b
f ( x ) = f ( b ) + f ′ ( b ) ( x − b ) + f ′ ′ ( ξ 2 ) 2 ! ( x − b ) 2 , x < ξ 2 < b f(x)=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime\prime}(\xi_2)}{2!}(x-b)^2,x<\xi_2f(x)=f(b)+f(b)(xb)+2!f(ξ2)(xb)2,x<ξ2<b
x = a + b 2 x=\frac{a+b}{2} x=2a+b代入上式,得
f ( a + b 2 ) = f ( b ) + f ′ ′ ( ξ 2 ) 2 ! ( b − a 2 ) 2 , a + b 2 < ξ 2 < b f\left(\frac{a+b}{2}\right)=f(b)+\frac{f^{\prime\prime}(\xi_2)}{2!}\left(\frac{b-a}{2}\right)^2,\frac{a+b}{2}<\xi_2f(2a+b)=f(b)+2!f(ξ2)(2ba)2,2a+b<ξ2<b

0 = f ( b ) − f ( a ) + ( b − a ) 2 8 [ f ′ ′ ( ξ 2 ) − f ′ ′ ( ξ 1 ) ] 0=f(b)-f(a)+\frac{(b-a)^2}{8}\left[f^{\prime\prime}(\xi_2)-f^{\prime\prime}(\xi_1)\right] 0=f(b)f(a)+8(ba)2[f(ξ2)f(ξ1)]
则有 ∣ f ( b ) − f ( a ) ∣ = ( b − a ) 2 8 ∣ f ′ ′ ( ξ 2 ) − f ′ ′ ( ξ 1 ) ∣ ≤ ( b − a ) 2 8 ( ∣ f ′ ′ ( ξ 2 ) ∣ + ∣ f ′ ′ ( ξ 1 ) ∣ ) \left|f(b)-f(a)\right|=\frac{(b-a)^2}{8}\left|f^{\prime\prime}(\xi_2)-f^{\prime\prime}(\xi_1)\right|\leq\frac{(b-a)^2}{8}(|f^{\prime\prime}(\xi_2)|+|f^{\prime\prime}(\xi_1)|) f(b)f(a)=8(ba)2f(ξ2)f(ξ1)8(ba)2(f(ξ2)+f(ξ1))
∣ f ′ ′ ( ξ ) ∣ = max ⁡ { ∣ f ′ ′ ( ξ 1 ) ∣ , ∣ f ′ ′ ( ξ 2 ) ∣ } |f^{\prime\prime}(\xi)|=\max\left\{|f^{\prime\prime}(\xi_1)|,|f^{\prime\prime}(\xi_2)|\right\} f(ξ)=max{f(ξ1),f(ξ2)},有 ∣ f ( b ) − f ( a ) ∣ ≤ ( b − a ) 2 8 ⋅ 2 ∣ f ′ ′ ( ξ ) ∣ |f(b)-f(a)|\leq\frac{(b-a)^2}{8}\cdot 2|f^{\prime\prime}(\xi)| f(b)f(a)8(ba)22f(ξ),即 ∣ f ′ ′ ( ξ ) ≥ 4 f ( b ) − f ( a ) ( b − a ) 2 ∣ \left|f^{\prime\prime}(\xi)\geq4\frac{f(b)-f(a)}{(b-a)^2}\right| f(ξ)4(ba)2f(b)f(a)

16.设 a < b < c aa<b<c,函数 f ( x ) f(x) f(x) [ a , c ] [a,c] [a,c]上具有二阶导数,试证:存在一点 ξ ∈ ( a , c ) \xi\in(a,c) ξ(a,c),使得 f ( a ) ( a − b ) ( a − c ) + f ( b ) ( b − a ) ( b − c ) + f ( c ) ( c − a ) ( c − b ) = 1 2 f ′ ′ ( ξ ) \frac{f(a)}{(a-b)(a-c)}+\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}=\frac{1}{2}f^{\prime\prime}(\xi) (ab)(ac)f(a)+(ba)(bc)f(b)+(ca)(cb)f(c)=21f(ξ)
F ( x ) = ( x − b ) ( x − c ) f ( a ) ( a − b ) ( a − c ) + ( x − a ) ( x − c ) f ( b ) ( b − a ) ( b − c ) + ( x − a ) ( x − b ) f ( c ) ( c − a ) ( c − b ) − f ( x ) F(x)=\frac{(x-b)(x-c)f(a)}{(a-b)(a-c)}+\frac{(x-a)(x-c)f(b)}{(b-a)(b-c)}+\frac{(x-a)(x-b)f(c)}{(c-a)(c-b)}-f(x) F(x)=(ab)(ac)(xb)(xc)f(a)+(ba)(bc)(xa)(xc)f(b)+(ca)(cb)(xa)(xb)f(c)f(x),由题设 F ( x ) F(x) F(x) [ a , c ] [a,c] [a,c]上二阶可导,且有 F ( a ) = F ( b ) = F ( c ) = 0 F(a)=F(b)=F(c)=0 F(a)=F(b)=F(c)=0,对 F ( x ) F(x) F(x) [ a , b ] , [ b , c ] [a,b],[b,c] [a,b],[b,c]分别应用罗尔定理,必存在 ξ 1 ∈ ( a , b ) , ξ 2 ∈ ( b , c ) \xi_1\in(a,b),\xi_2\in(b,c) ξ1(a,b),ξ2(b,c),使得
F ′ ( ξ 1 ) = 0 , F ′ ( ξ 2 ) = 0 F^{\prime}(\xi_1)=0,F^{\prime}(\xi_2)=0 F(ξ1)=0,F(ξ2)=0
又由于 F ′ ( x ) F^{\prime}(x) F(x) [ ξ 1 , ξ 2 ] [\xi_1,\xi_2] [ξ1,ξ2]上可导,再应用罗尔定理,必存在 ξ = ( ξ 1 , ξ 2 ) ⊂ ( a , c ) \xi=(\xi_1,\xi_2)\subset(a,c) ξ=(ξ1,ξ2)(a,c),使得 F ′ ′ ( ξ ) = 0 F^{\prime\prime}(\xi)=0 F(ξ)=0,而
F ′ ′ ( x ) = 2 f ( a ) ( a − b ) ( a − c ) + 2 f ( b ) ( b − a ) ( b − c ) + 2 f ( c ) ( c − a ) ( c − b ) − f ′ ′ ( ξ ) F^{\prime\prime}(x)= \frac{2f(a)}{(a-b)(a-c)}+\frac{2f(b)}{(b-a)(b-c)}+\frac{2f(c)}{(c-a)(c-b)}-f^{\prime\prime}(\xi) F(x)=(ab)(ac)2f(a)+(ba)(bc)2f(b)+(ca)(cb)2f(c)f(ξ)
ξ \xi ξ x x x,即得所证结论。

17.设函数 f ( x ) f(x) f(x) [ 1 , 3 ] [1,3] [1,3]上二阶导数连续,试证:至少存在一点 ξ ∈ ( 1 , 3 ) \xi\in(1,3) ξ(1,3),使 f ′ ′ ( ξ ) = f ( 1 ) − 2 f ( 2 ) + f ( 3 ) f^{\prime\prime}(\xi)=f(1)-2f(2)+f(3) f(ξ)=f(1)2f(2)+f(3)
证明
f ( x ) f(x) f(x) x = 2 x=2 x=2处展成泰勒公式,得
f ( x ) = f ( 2 ) + f ′ ( 2 ) ( x − 2 ) + f ′ ′ ( ξ ) 2 ! ( x − 2 ) 2 f(x)=f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime\prime}(\xi)}{2!}(x-2)^2 f(x)=f(2)+f(2)(x2)+2!f(ξ)(x2)2

f ( 1 ) = f ( 2 ) + f ′ ( 2 ) ( − 1 ) + f ′ ′ ( ξ 1 ) 2 ! ( − 1 ) 2 , 1 < ξ 1 < 2 f(1)=f(2)+f^{\prime}(2)(-1)+ \frac{f^{\prime\prime}(\xi_1)}{2!}(-1)^2,1<\xi_1<2 f(1)=f(2)+f(2)(1)+2!f(ξ1)(1)2,1<ξ1<2

f ( 3 ) = f ( 2 ) + f ′ ( 2 ) + f ′ ′ ( ξ 2 ) 2 ! , 2 < ξ 2 < 3 f(3)=f(2)+f^{\prime}(2)+\frac{f^{\prime\prime}(\xi_2)}{2!},2<\xi_2<3 f(3)=f(2)+f(2)+2!f(ξ2),2<ξ2<3
f ( 1 ) + f ( 3 ) = 2 f ( 2 ) + 1 2 [ f ′ ′ ( ξ 1 ) + f ′ ′ ( ξ 2 ) ] f(1)+f(3)=2f(2)+\frac{1}{2}\left[f^{\prime\prime}(\xi_1)+f^{\prime\prime}(\xi_2)\right] f(1)+f(3)=2f(2)+21[f(ξ1)+f(ξ2)],由介值定理, ∃   ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( 1 , 3 ) \exists\,\xi\in(\xi_1,\xi_2)\subset(1,3) ξ(ξ1,ξ2)(1,3),使 f ′ ′ ( ξ ) = 1 2 [ f ′ ′ ( ξ 1 ) + f ′ ′ ( ξ 2 ) ] f^{\prime\prime}(\xi)=\frac{1}{2}\left[f^{\prime\prime}(\xi_1)+f^{\prime\prime}(\xi_2)\right] f(ξ)=21[f(ξ1)+f(ξ2)],有 f ′ ′ ( ξ ) = f ( 1 ) + f ( 3 ) − 2 f ( 2 ) f^{\prime\prime}(\xi)=f(1)+f(3)-2f(2) f(ξ)=f(1)+f(3)2f(2)

18.设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内具有二阶导数且存在相等的最大值, f ( a ) = g ( a ) f(a)=g(a) f(a)=g(a) f ( b ) = g ( b ) f(b)=g(b) f(b)=g(b)。证明:存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ′ ′ ( ξ ) = g ′ ′ ( ξ ) f^{\prime\prime}(\xi)=g^{\prime\prime}(\xi) f(ξ)=g(ξ)
证明
φ ( x ) = f ( x ) − g ( x ) \varphi(x)=f(x)-g(x) φ(x)=f(x)g(x),由题设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)存在相等的最大值,设 x 1 ∈ ( a , b ) , x 2 ∈ ( a , b ) x_1\in(a,b),x_2\in(a,b) x1(a,b),x2(a,b)使 f ( x 1 ) = max ⁡ [ a , b ] f ( x ) = g ( x 2 ) = max ⁡ [ a , b ] g ( x ) f(x_1)=\max\limits_{[a,b]}f(x)=g(x_2)=\max\limits_{[a,b]}g(x) f(x1)=[a,b]maxf(x)=g(x2)=[a,b]maxg(x)
x 1 = x 2 x_1=x_2 x1=x2,即 f ( x ) f(x) f(x) g ( x ) g(x) g(x)在同一点取得最大值,此时,取 η = x 1 \eta=x_1 η=x1,有 f ( η ) = g ( η ) f(\eta)=g(\eta) f(η)=g(η)
x 1 ≠ x 2 x_1\neq x_2 x1=x2,不妨设 x 1 < x 2 x_1x1<x2,则 φ ( x 1 ) = f ( x 1 ) − g ( x 1 ) > 0 \varphi(x_1)=f(x_1)-g(x_1)>0 φ(x1)=f(x1)g(x1)>0 φ ( x 2 ) < f ( x 2 ) − g ( x 2 ) < 0 \varphi(x_2)φ(x2)<f(x2)g(x2)<0,且 φ ( x ) \varphi(x) φ(x) [ a , b ] [a,b] [a,b]上连续,则由零点定理得存在 η ∈ ( a , b ) \eta\in(a,b) η(a,b),使得 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0,即 f ( η ) = g ( η ) f(\eta)=g(\eta) f(η)=g(η)
由题设 f ( a ) = g ( a ) f(a)=g(a) f(a)=g(a) f ( b ) = g ( b ) f(b)=g(b) f(b)=g(b),则 φ ( a ) = 0 = φ ( b ) \varphi(a)=0=\varphi(b) φ(a)=0=φ(b),结合 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0,且 φ ( x ) \varphi(x) φ(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内二阶可导,应用两次罗尔定理知:
存在 ξ 1 ∈ ( a , η ) , ξ 2 ∈ ( η , b ) \xi_1\in(a,\eta),\xi_2\in(\eta,b) ξ1(a,η),ξ2(η,b),使得 φ ′ ( ξ 1 ) = 0 \varphi^{\prime}(\xi_1)=0 φ(ξ1)=0 φ ′ ( ξ 2 ) = 0 \varphi^{\prime}(\xi_2)=0 φ(ξ2)=0
[ ξ 1 , ξ 2 ] [\xi_1,\xi_2] [ξ1,ξ2]再用罗尔定理,则存在 ξ ∈ ( ξ 1 , ξ 2 ) \xi\in(\xi_1,\xi_2) ξ(ξ1,ξ2),使 φ ′ ′ ( ξ ) = 0 \varphi^{\prime\prime}(\xi)=0 φ(ξ)=0。即 f ′ ′ ( ξ ) = g ′ ′ ( ξ ) f^{\prime\prime}(\xi)=g^{\prime\prime}(\xi) f(ξ)=g(ξ)

数学强化通关330题(数学一)西安交通大学出版社

19.设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有二阶连续导数,且 f ( a ) = f ( b ) = 0 f(a)=f(b)=0 f(a)=f(b)=0 M = max ⁡ [ a , b ] ∣ f ′ ′ ( x ) ∣ M=\max\limits_{[a,b]}\left|f^{\prime\prime}(x)\right| M=[a,b]

你可能感兴趣的:(考研数学)