1.设 a > b > 0 a>b>0 a>b>0,证明 a − b a < ln a b < a − b b \frac{a-b}{a}<\ln\frac{a}{b}<\frac{a-b}{b} aa−b<lnba<ba−b
解
构造辅助函数 f ( x ) = ln ( x ) f(x)=\ln(x) f(x)=ln(x),则 f ( x ) f(x) f(x)在 [ b , a ] [b,a] [b,a]上连续,在 ( b , a ) (b,a) (b,a)内可导,则 f ( x ) = ln x f(x)=\ln x f(x)=lnx在 [ b , a ] [b,a] [b,a]上满足拉格朗日中值定理的条件,故至少存在一点 ξ ∈ ( b , a ) \xi\in(b,a) ξ∈(b,a),使得 f ( a ) − f ( b ) a − b = f ′ ( ξ ) \frac{f(a)-f(b)}{a-b}=f^{\prime}(\xi) a−bf(a)−f(b)=f′(ξ),即
ln a − ln b a − b = 1 ξ \frac{\ln a-\ln b}{a-b}=\frac{1}{\xi} a−blna−lnb=ξ1
因为 1 a < 1 ξ < 1 b \frac{1}{a}<\frac{1}{\xi}<\frac{1}{b} a1<ξ1<b1,所以 1 a < ln a − ln b a − b < 1 b \frac{1}{a}<\frac{\ln a-\ln b}{a-b}<\frac{1}{b} a1<a−blna−lnb<b1,即
a − b a < ln a b < a − b b \frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b} aa−b<lnba<ba−b
2.证明不等式 x 1 + x 2 < arctan x < x ( x > 0 ) \frac{x}{1+x^2}<\arctan x
解
做辅助函数 f ( x ) = arctan x ( x > 0 ) f(x)=\arctan x(x>0) f(x)=arctanx(x>0),因 f ( x ) f(x) f(x)在 [ 0 , x ] [0,x] [0,x]上满足拉格朗日中值定理条件,因此有 f ( x ) − f ( 0 ) = f ′ ( ξ ) ( x − 0 ) , ξ ∈ ( 0 , x ) f(x)-f(0)=f^{\prime}(\xi)(x-0),\xi\in(0,x) f(x)−f(0)=f′(ξ)(x−0),ξ∈(0,x),
即
arctan x − arctan 0 = x 1 + ξ 2 \arctan x-\arctan 0=\frac{x}{1+\xi^2} arctanx−arctan0=1+ξ2x
亦即
arctan x = x 1 + ξ 2 \arctan x= \frac{x}{1+\xi^2} arctanx=1+ξ2x
因 0 < ξ < x 0<\xi
x 1 + x 2 < arctan x < x ( x > 0 ) \frac{x}{1+x^2}<\arctan x
3.已知函数 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]连续,在 ( 0 , 1 ) (0,1) (0,1)上可导,且 f ( 0 ) = 1 , f ( 1 ) = 1 f(0)=1,f(1)=1 f(0)=1,f(1)=1,证明:
( 1 ) (1) (1)令 F ( x ) = f ( x ) − 1 + x F(x)=f(x)-1+x F(x)=f(x)−1+x,有 F ( x ) F(x) F(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,且
F ( 0 ) = f ( 0 ) − 1 = − 1 < 0 F(0)=f(0)-1=-1<0 F(0)=f(0)−1=−1<0
F ( 1 ) = f ( 1 ) − 1 + 1 = f ( 1 ) = 1 > 0 F(1)=f(1)-1+1=f(1)=1>0 F(1)=f(1)−1+1=f(1)=1>0
则 F ( 0 ) F ( 1 ) < 0 F(0)F(1)<0 F(0)F(1)<0,于是由介值定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使得 F ( ξ ) = 0 F(\xi)=0 F(ξ)=0,即 f ( ξ ) = 1 − ξ f(\xi)=1-\xi f(ξ)=1−ξ。
( 2 ) f ( x ) (2)f(x) (2)f(x)在 [ 0 , ξ ] [0,\xi] [0,ξ]和 [ ξ , 1 ] [\xi,1] [ξ,1]上分别应用拉格朗日中值定理知,存在两个不同的点 η ∈ ( 0 , ξ ) , ζ ∈ ( ξ , 1 ) \eta\in(0,\xi),\zeta\in(\xi,1) η∈(0,ξ),ζ∈(ξ,1),使得
f ′ ( η ) = f ( ξ ) − f ( 0 ) ξ − 0 = ( 1 − ξ ) − 0 ξ = 1 − ξ ξ f^{\prime}(\eta)=\frac{f(\xi)-f(0)}{\xi-0}=\frac{(1-\xi)-0}{\xi}=\frac{1-\xi}{\xi} f′(η)=ξ−0f(ξ)−f(0)=ξ(1−ξ)−0=ξ1−ξ
f ′ ( ζ ) = f ( 1 ) − f ( ξ ) 1 − ξ = 1 − ( 1 − ξ ) 1 − ξ = ξ 1 − ξ f^{\prime}(\zeta)=\frac{f(1)-f(\xi)}{1-\xi}=\frac{1-(1-\xi)}{1-\xi}=\frac{\xi}{1-\xi} f′(ζ)=1−ξf(1)−f(ξ)=1−ξ1−(1−ξ)=1−ξξ
于是
f ′ ( η ) f ′ ( ζ ) = 1 − ξ ξ ⋅ ξ 1 − ξ = 1 f^{\prime}(\eta) f^{\prime}(\zeta)= \frac{1-\xi}{\xi}\cdot \frac{\xi}{1-\xi}=1 f′(η)f′(ζ)=ξ1−ξ⋅1−ξξ=1
4.设 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)在 [ a , b ] [a,b] [a,b]上存在二阶导数,并且 g ′ ′ ( x ) ≠ 0 g^{\prime\prime}(x)\neq0 g′′(x)=0, f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 f(a)=f(b)=g(a)=g(b)=0 f(a)=f(b)=g(a)=g(b)=0
试证: ( 1 ) (1) (1)在 ( a , b ) (a,b) (a,b)内, g ( x ) ≠ 0 g(x)\neq0 g(x)=0; ( 2 ) (2) (2)在 ( a , b ) (a,b) (a,b)内,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac {f^{\prime\prime}(\xi)}{g^{\prime\prime}(\xi)} g(ξ)f(ξ)=g′′(ξ)f′′(ξ)
证明
( 1 ) (1) (1)用反证法。假设存在 x 0 ∈ ( a , b ) x_0\in(a,b) x0∈(a,b),使 g ( x 0 ) = 0 g(x_0)=0 g(x0)=0。
g ( x ) g(x) g(x)在 [ a , x 0 ] [a,x_0] [a,x0]上满足罗尔定理条件,至少存在一点 c 1 ∈ ( a , x 0 ) c_1\in(a,x_0) c1∈(a,x0),使 g ′ ( c 1 ) = 0 g^{\prime}(c_1)=0 g′(c1)=0;
g ( x ) g(x) g(x)在 [ x 0 , b ] [x_0,b] [x0,b]上满足罗尔定理条件,至少存在一点 c 2 ∈ ( x 0 , b ) c_2\in(x_0,b) c2∈(x0,b),使 g ′ ( c 2 ) = 0 g^{\prime}(c_2)=0 g′(c2)=0;
g ′ ( x ) g^{\prime}(x) g′(x)在 [ c 1 , c 2 ] [c_1,c_2] [c1,c2]上满足罗尔定理条件,至少存在一点 c ∈ ( c 1 , c 2 ) c\in(c_1,c_2) c∈(c1,c2),使 g ′ ′ ( c ) = 0 g^{\prime\prime}(c)=0 g′′(c)=0;
与对每一个 x ∈ ( a , b ) , g ′ ′ ( x ) ≠ 0 x\in(a,b),g^{\prime\prime}(x)\neq0 x∈(a,b),g′′(x)=0相矛盾,所以假设不成立,即 ∀ x ∈ ( a , b ) , g ( x ) ≠ 0 \forall x\in(a,b),g(x)\neq0 ∀x∈(a,b),g(x)=0。
( 2 ) (2) (2)要证 f ( ξ ) g ( ξ ) = f ′ ′ ( ξ ) g ′ ′ ( ξ ) \frac{f(\xi)}{g(\xi)}=\frac {f^{\prime\prime}(\xi)}{g^{\prime\prime}(\xi)} g(ξ)f(ξ)=g′′(ξ)f′′(ξ)成立,由 g ( x ) ≠ 0 , g ′ ′ ( x ) ≠ 0 g(x)\neq 0, g^{\prime\prime}(x)\neq 0 g(x)=0,g′′(x)=0,只要证 f ( ξ ) g ′ ′ ( ξ ) − g ( ξ ) f ′ ′ ( ξ ) = 0 f(\xi) g^{\prime\prime}(\xi)-g(\xi) f^{\prime\prime}(\xi) =0 f(ξ)g′′(ξ)−g(ξ)f′′(ξ)=0成立,只要证 [ f ( x ) g ′ ′ ( x ) − g ( x ) f ′ ′ ( x ) ] ∣ x = ξ = 0 \left.\left[f(x) g^{\prime\prime}(x)-g(x) f^{\prime\prime}(x) \right]\right|_{x=\xi}=0 [f(x)g′′(x)−g(x)f′′(x)]∣x=ξ=0成立,只要证 ( f ( x ) g ′ ( x ) − g ( x ) f ′ ( x ) ) ′ ∣ x = ξ = 0 \left.\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x) \right)^{\prime}\right|_{x=\xi}=0 (f(x)g′(x)−g(x)f′(x))′∣∣x=ξ=0成立,设 F ( x ) = f ( x ) g ′ ( x ) − g ( x ) f ′ ( x ) F(x)= f(x) g^{\prime}(x) -g(x) f^{\prime}(x) F(x)=f(x)g′(x)−g(x)f′(x),只要证
F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0成立, F ( x ) F(x) F(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,由罗尔定理知,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0成立
5.设 f ( x ) f\left( x \right) f(x) 在 [ a , b ] \left[ a,b \right] [a,b]上具有二阶导数,且 f ( a ) = f ( b ) = 0 f\left( a \right) =f\left( b \right) =0 f(a)=f(b)=0, f ′ ( a ) f ′ ( b ) > 0 f^{\prime}\left( a \right) f^{\prime}\left( b \right) >0 f′(a)f′(b)>0。证明:存在 ξ ∈ ( a , b ) \xi \in \left( a,b \right) ξ∈(a,b)和 η ∈ ( a , b ) \eta \in \left( a,b \right) η∈(a,b),使 f ( ξ ) = 0 f\left( \xi \right) =0 f(ξ)=0, f ′ ′ ( η ) = 0 f^{\prime\prime}\left( \eta \right) =0 f′′(η)=0。
证明
由 f ′ ( a ) f ′ ( b ) > 0 f^{\prime}\left( a \right) f^{\prime}\left( b \right) >0 f′(a)f′(b)>0,不妨设 f ′ ( a ) > 0 , f ′ ( b ) > 0 f^{\prime}(a)>0,f^{\prime}(b)>0 f′(a)>0,f′(b)>0,由于 lim x → a + f ( x ) − f ( a ) x − a = lim x → a + f ( x ) x − a = f ′ ( a ) > 0 \lim\limits_{x \to a^+}{\frac{f(x)-f(a)}{x-a}}= \lim\limits_{x \to a^+}{\frac{f(x)}{x-a}}=f^{\prime}(a)>0 x→a+limx−af(x)−f(a)=x→a+limx−af(x)=f′(a)>0,由保号性,存在 δ 1 > 0 \delta_1>0 δ1>0,当 x ∈ ( a , a + δ 1 ) x\in(a,a+\delta_1) x∈(a,a+δ1)时, f ( x ) x − a > 0 \frac{f(x)}{x-a}>0 x−af(x)>0,而 x − a > 0 x-a>0 x−a>0,知 f ( x ) > 0 f(x)>0 f(x)>0,取 a 1 ∈ ( a , a + δ 1 ) , f ( a 1 ) > 0 a_1\in(a,a+\delta_1),f(a_1)>0 a1∈(a,a+δ1),f(a1)>0;
又 lim x → b − f ( x ) − f ( b ) x − b = lim x → b − f ( x ) x − b = f ′ ( b ) > 0 \lim\limits_{x \to b^-}{\frac{f(x)-f(b)}{x-b}}= \lim\limits_{x \to b^-}{\frac{f(x)}{x-b}}=f^{\prime}(b)>0 x→b−limx−bf(x)−f(b)=x→b−limx−bf(x)=f′(b)>0,由保号性,存在 δ 2 > 0 ( a 1 < b − δ 2 ) \delta_2>0(a_1
f ( x ) f(x) f(x)在 [ a , ξ ] [a,\xi] [a,ξ]上满足罗尔定理,至少存在一点 c 1 ∈ ( a , ξ ) c_1\in(a,\xi) c1∈(a,ξ),使 f ′ ( c 1 ) = 0 f^{\prime}(c_1)=0 f′(c1)=0;
f ( x ) f(x) f(x)在 [ ξ , b ] [\xi,b] [ξ,b]上满足罗尔定理,至少存在一点 c 2 ∈ ( ξ , b ) c_2\in(\xi,b) c2∈(ξ,b),使 f ′ ( c 2 ) = 0 f^{\prime}(c_2)=0 f′(c2)=0;
f ′ ( x ) f^{\prime}(x) f′(x)在 [ c 1 , c 2 ] [c_1,c_2] [c1,c2]上满足罗尔定理,至少存在一点 η ∈ ( c 1 , c 2 ) ⊂ ( a , b ) \eta\in(c_1,c_2)\subset(a,b) η∈(c1,c2)⊂(a,b),使 f ′ ′ ( η ) = 0 f^{\prime\prime}(\eta)=0 f′′(η)=0。
6.设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)可导,证明在 f ( x ) f(x) f(x)的两个零值点之间必有函数 f ′ ( x ) + f ( x ) g ′ ( x ) f^{\prime}(x)+f(x)g^{\prime}(x) f′(x)+f(x)g′(x)的零值点。
证明
由题意知 ∃ x 1 < x 2 \exists \,x_1
F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0
成立, F ( x ) F(x) F(x)在 [ x 1 , x 2 ] [x_1,x_2] [x1,x2]上连续,在 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)内可导, F ( x 1 ) = F ( x 2 ) = 0 F(x_1)=F(x_2)=0 F(x1)=F(x2)=0,由罗尔定理知,至少存在一点 ξ ∈ ( x 1 , x 2 ) \xi\in(x_1,x_2) ξ∈(x1,x2),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0。
7.若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在 [ a , b ] [a,b] [a,b]上可导,且 g ′ ( x ) ≠ 0 g^{\prime}(x)\neq 0 g′(x)=0,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使
f ( a ) − f ( ξ ) g ( ξ ) − g ( b ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(a)-f(\xi)}{g(\xi)-g(b)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} g(ξ)−g(b)f(a)−f(ξ)=g′(ξ)f′(ξ)
证明
要证结论成立,只要证 [ f ( a ) − f ( ξ ) ] g ′ ( ξ ) − [ g ( ξ ) − g ( b ) ] f ′ ( ξ ) = 0 \left[f(a)-f(\xi)\right]g^{\prime}(\xi)-[g(\xi)-g(b)]f^{\prime}(\xi)=0 [f(a)−f(ξ)]g′(ξ)−[g(ξ)−g(b)]f′(ξ)=0成立,只要证 { [ f ( a ) − f ( x ) ] g ′ ( x ) − [ g ( x ) − g ( b ) ] f ′ ( x ) } x = ξ = 0 \left\{[f(a)-f(x)]g^{\prime}(x)-[g(x)-g(b)]f^{\prime}(x)\right\}_{x=\xi}=0 {[f(a)−f(x)]g′(x)−[g(x)−g(b)]f′(x)}x=ξ=0成立,只要证 { [ f ( a ) − f ( x ) ] [ g ( x ) − g ( b ) ] } ′ ∣ x = ξ = 0 \left. \left\{[f(a)-f(x)][g(x)-g(b)]\right\}^{\prime}\right|_{x=\xi}=0 {[f(a)−f(x)][g(x)−g(b)]}′∣∣x=ξ=0成立,令 F ( x ) = [ f ( a ) − f ( x ) ] [ g ( x ) − g ( b ) ] F(x)= [f(a)-f(x)][g(x)-g(b)] F(x)=[f(a)−f(x)][g(x)−g(b)],只要证 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0
成立, F ( x ) F(x) F(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导, F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,由罗尔定理知,至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0。
8.设 f ( x ) f(x) f(x)在闭区间 [ x 1 , x 2 ] [x_1,x_2] [x1,x2]上可微,并且 x 1 x 2 > 0 x_1x_2>0 x1x2>0,证明:在 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)内至少存在一点 ξ \xi ξ,使
1 x 1 − x 2 ∣ x 1 x 2 f ( x 1 ) f ( x 2 ) ∣ = f ( ξ ) − ξ f ′ ( ξ ) \frac{1}{x_1-x_2}\begin{vmatrix}x_1&x_2\\f(x_1)&f(x_2)\end{vmatrix}=f(\xi)-\xi f^{\prime}(\xi) x1−x21∣∣∣∣x1f(x1)x2f(x2)∣∣∣∣=f(ξ)−ξf′(ξ)
证明
要证原等式成立,只要证 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 1 − x 2 = f ( ξ ) − ξ f ′ ( ξ ) \frac{x_1f(x_2)-x_2f(x_1)}{x_1-x_2}=f(\xi)-\xi f^{\prime}(\xi) x1−x2x1f(x2)−x2f(x1)=f(ξ)−ξf′(ξ)成立,由 x 1 x 2 > 0 x_1x_2>0 x1x2>0,知 x 1 ≠ 0 , x 2 ≠ 0 x_1\neq 0,x_2\neq0 x1=0,x2=0,只要证
f ( x 2 ) x 2 − f ( x 1 ) x 1 1 x 2 − 1 x 1 = f ( ξ ) − ξ f ′ ( ξ ) \frac{\frac{f(x_2)}{x_2}-\frac{f(x_1)}{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=f(\xi)-\xi f^{\prime}(\xi) x21−x11x2f(x2)−x1f(x1)=f(ξ)−ξf′(ξ)
成立。设 F ( x ) = f ( x ) x F(x)=\frac{f(x)}{x} F(x)=xf(x), G ( x ) = 1 x G(x)=\frac{1}{x} G(x)=x1, F ′ ( x ) = f ′ ( x ) x − f ( x ) x 2 F^{\prime}(x)=\frac{f^{\prime}(x)x-f(x)}{x^2} F′(x)=x2f′(x)x−f(x), G ′ ( x ) = − 1 x 2 G^{\prime}(x)=-\frac{1}{x^2} G′(x)=−x21,由 x 1 x 2 > 0 x_1x_2>0 x1x2>0,知 x 1 , x 2 x_1,x_2 x1,x2同号,知 0 ∉ [ x 1 , x 2 ] 0\not\in[x_1,x_2] 0∈[x1,x2],故 F ( x ) , G ( x ) F(x),G(x) F(x),G(x)在 [ x 1 , x 2 ] [x_1,x_2] [x1,x2]上满足柯西定理条件,有
f ( x 2 ) x 2 − f ( x 1 ) x 1 1 x 2 − 1 x 1 = F ( x 2 ) − F ( x 1 ) G ( x 2 ) − G ( x 1 ) = F ′ ( ξ ) G ′ ( ξ ) = f ′ ( ξ ) ξ − f ( ξ ) ξ 2 − 1 / ξ 2 = f ( ξ ) − ξ f ′ ( ξ ) \frac{\frac{f(x_2)}{x_2}-\frac{f(x_1)}{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=\frac{F(x_2)-F(x_1)}{G(x_2)-G(x_1)}=\frac{F^{\prime}(\xi)}{G^{\prime}(\xi)}=\frac{\frac{f^{\prime}(\xi)\xi-f(\xi)}{\xi^2}}{-1/\xi^2}=f(\xi)-\xi f^{\prime}(\xi) x21−x11x2f(x2)−x1f(x1)=G(x2)−G(x1)F(x2)−F(x1)=G′(ξ)F′(ξ)=−1/ξ2ξ2f′(ξ)ξ−f(ξ)=f(ξ)−ξf′(ξ)
9.设函数 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ′ ( x ) ≠ 0 f^{\prime}(x)\neq 0 f′(x)=0,证明存在 ξ , η ∈ ( a , b ) \xi,\eta\in(a,b) ξ,η∈(a,b),使得
f ′ ( ξ ) f ′ ( η ) = e b − e a b − a e − η \frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{e^b-e^a}{b-a}e^{-\eta} f′(η)f′(ξ)=b−aeb−eae−η
证明
要证原等式成立,只要证 f ′ ( ξ ) = e b − e a b − a ⋅ f ′ ( η ) e η f^{\prime}(\xi)= \frac{e^b-e^a}{b-a} \cdot\frac{f^{\prime}(\eta)}{e^{\eta}} f′(ξ)=b−aeb−ea⋅eηf′(η)成立,由 f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) f(b)-f(a)=f^{\prime}(c)(b-a) f(b)−f(a)=f′(c)(b−a),只要证
f ′ ( ξ ) f ( b ) − f ( a ) e b − e a = f ( b ) − f ( a ) b − a ⋅ f ′ ( η ) e η f^{\prime}(\xi)\frac{f(b)-f(a)}{e^b-e^a}=\frac{f(b)-f(a)}{b-a}\cdot\frac{f^{\prime}(\eta)}{e^{\eta}} f′(ξ)eb−eaf(b)−f(a)=b−af(b)−f(a)⋅eηf′(η)
成立,由拉格朗日定理知存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使
f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} f′(ξ)=b−af(b)−f(a)
再由 f ( x ) , e x f(x),e^x f(x),ex在 [ a , b ] [a,b] [a,b]上满足柯西定理的条件,知存在一点 η ∈ ( a , b ) \eta\in(a,b) η∈(a,b),使
f ( b ) − f ( a ) e b − e a = f ′ ( η ) e η \frac{f(b)-f(a)}{e^b-e^a}=\frac{f^{\prime}(\eta)}{e^{\eta}} eb−eaf(b)−f(a)=eηf′(η)
两式相乘,原式得证
10.设 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ( a ) = f ( b ) = 1 f(a)=f(b)=1 f(a)=f(b)=1,试证:存在 ξ , η ∈ ( a , b ) \xi,\eta\in(a,b) ξ,η∈(a,b),使得
e η − ξ [ f ( η ) + f ′ ( η ) ] = 1 e^{\eta-\xi}[f(\eta)+f^{\prime}(\eta)]=1 eη−ξ[f(η)+f′(η)]=1
证明
要证原等式成立,只要证
e η [ f ( η ) + f ′ ( η ) ] = e ξ e^{\eta}[f(\eta)+f^{\prime}(\eta)]=e^{\xi} eη[f(η)+f′(η)]=eξ
成立,由 F ( x ) = e x f ( x ) F(x)=e^xf(x) F(x)=exf(x)在 [ a , b ] [a,b] [a,b]上满足拉格朗日定理条件,有 e b f ( b ) − e a f ( a ) b − a = F ′ ( η ) = e η [ f ( η ) + f ′ ( η ) ] \frac{e^bf(b)-e^af(a)}{b-a}=F^{\prime}(\eta)=e^{\eta}[f(\eta)+f^{\prime}(\eta)] b−aebf(b)−eaf(a)=F′(η)=eη[f(η)+f′(η)], a < η < b a<\etaa<η<b,又应用拉格朗日定理知 e b f ( b ) − e a f ( a ) b − a = e b − a a b − a = e ξ \frac{e^bf(b)-e^af(a)}{b-a}=\frac{e^b-a^a}{b-a}=e^{\xi} b−aebf(b)−eaf(a)=b−aeb−aa=eξ, a < ξ < b a<\xia<ξ<b。原式成立。
11.设函数 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,且 f ( 0 ) = f ( 1 ) = 0 f(0)=f(1)=0 f(0)=f(1)=0, f ( 1 2 ) = 1 f\left(\frac{1}{2}\right)=1 f(21)=1,试证:
( 1 ) (1) (1)存在 η ∈ ( 1 2 , 1 ) \eta\in\left(\frac{1}{2},1\right) η∈(21,1),使 f ( η ) = η f(\eta)=\eta f(η)=η; ( 2 ) (2) (2)对任意实数 ξ \xi ξ,存在 ξ ∈ ( 0 , η ) \xi\in(0,\eta) ξ∈(0,η),使得 f ′ ( ξ ) − λ [ f ( ξ ) − ξ ] = 1 f^{\prime}(\xi)-\lambda[f(\xi)-\xi]=1 f′(ξ)−λ[f(ξ)−ξ]=1。
证明
( 1 ) (1) (1)设 φ ( x ) = f ( x ) − x \varphi(x)=f(x)-x φ(x)=f(x)−x, φ ( x ) \varphi(x) φ(x)在 [ 1 2 , 1 ] \left[\frac{1}{2},1\right] [21,1]上连续,
φ ( 1 ) = f ( 1 ) − 1 = − 1 < 0 , φ ( 1 2 ) = f ( 1 2 ) − 1 2 = 1 − 1 2 = 1 2 > 0 \varphi(1)=f(1)-1=-1<0,\varphi\left(\frac{1}{2}\right)=f\left(\frac{1}{2}\right)-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}>0 φ(1)=f(1)−1=−1<0,φ(21)=f(21)−21=1−21=21>0
由根的存在定理知,至少存在一点 η ∈ ( 1 2 , 1 ) \eta\in\left(\frac{1}{2},1\right) η∈(21,1),使 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0。
( 2 ) (2) (2)要证 f ′ ( ξ ) − λ [ f ( ξ ) − ξ ] = 1 f^{\prime}(\xi)-\lambda[f(\xi)-\xi]=1 f′(ξ)−λ[f(ξ)−ξ]=1成立,只要证 f ′ ( ξ ) − 1 − λ [ f ( ξ ) − ξ ] = 0 f^{\prime}(\xi)-1-\lambda[f(\xi)-\xi]=0 f′(ξ)−1−λ[f(ξ)−ξ]=0成立,由 φ ( ξ ) = f ( ξ ) − ξ \varphi(\xi)=f(\xi)-\xi φ(ξ)=f(ξ)−ξ, φ ′ ( x ) = f ′ ( x ) − 1 \varphi^{\prime}(x)=f^{\prime}(x)-1 φ′(x)=f′(x)−1, φ ′ ( ξ ) = f ′ ( ξ ) − 1 \varphi^{\prime}(\xi)=f^{\prime}(\xi)-1 φ′(ξ)=f′(ξ)−1,只要证 φ ′ ( ξ ) − λ φ ( ξ ) = 0 \varphi^{\prime}(\xi)-\lambda\varphi(\xi)=0 φ′(ξ)−λφ(ξ)=0成立,只要证 [ φ ′ ( ξ ) − λ φ ( ξ ) ] e − λ ξ = 0 [\varphi^{\prime}(\xi)-\lambda\varphi(\xi)]e^{-\lambda\xi}=0 [φ′(ξ)−λφ(ξ)]e−λξ=0成立,只要证 { [ φ ′ ( x ) − λ φ ( x ) ] e − λ x } ∣ x = ξ = 0 \left.\left\{[\varphi^{\prime}(x)-\lambda \varphi(x)]e^{-\lambda x}\right\}\right|_{x=\xi}=0 {[φ′(x)−λφ(x)]e−λx}∣∣x=ξ=0成立,只要证 [ φ ( x ) e − λ x ] ′ ∣ x = ξ = 0 \left.\left[\varphi(x)e^{-\lambda x}\right]^{\prime}\right|_{x=\xi}=0 [φ(x)e−λx]′∣∣∣x=ξ=0成立,设 F ( x ) = φ ( x ) e − λ x F(x)= \varphi(x)e^{-\lambda x} F(x)=φ(x)e−λx,则只要证
F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0
成立, F ( x ) F(x) F(x)在 [ 0 , η ] [0,\eta] [0,η]连续,在 ( 0 , η ) (0,\eta) (0,η)内可导, F ( 0 ) = 0 = F ( η ) F(0)=0=F(\eta) F(0)=0=F(η),由罗尔定理知,至少存在一点 ξ ∈ ( 0 , η ) \xi\in(0,\eta) ξ∈(0,η),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0,原式得证。
12.设 f ( x ) f(x) f(x)二阶可导,且在 ( 0 , a ) (0,a) (0,a)内某点取到最大之外,对一切 x ∈ [ 0 , a ] x\in[0,a] x∈[0,a],都有 ∣ f ′ ′ ( x ) ∣ ≤ m ( m 为 常 数 ) \left|f^{\prime\prime}(x)\right|\leq m(m 为常数) ∣f′′(x)∣≤m(m为常数),证明: ∣ f ′ ( 0 ) ∣ + ∣ f ′ ( a ) ∣ ≤ a m \left|f^{\prime}(0)\right|+\left|f^{\prime}(a)\right|\leq am ∣f′(0)∣+∣f′(a)∣≤am。
证明
由 f ( x ) f(x) f(x)在 x 0 x_0 x0处取到最大值,且 x 0 ∈ ( 0 , a ) x_0\in(0,a) x0∈(0,a),知 f ( x 0 ) f(x_0) f(x0)为极大值又 f ′ ( x 0 ) f^{\prime}(x_0) f′(x0)存在,由费马定理知 f ′ ( x 0 ) = 0 f^{\prime}(x_0)=0 f′(x0)=0,于是
∣ f ′ ( 0 ) ∣ + ∣ f ′ ( a ) ∣ = ∣ f ′ ( x 0 ) − f ′ ( 0 ) ∣ + ∣ f ′ ( a ) − f ′ ( x 0 ) ∣ = ∣ f ′ ′ ( ξ 1 ) x 0 ∣ + ∣ f ′ ′ ( ξ 2 ) ( a − x 0 ) ∣ ≤ m x 0 + m ( a − x 0 ) = m a \begin{aligned} \left|f^{\prime}(0)\right|+\left|f^{\prime}(a)\right|&=\left|f^{\prime}(x_0)-f^{\prime}(0)\right|+ \left|f^{\prime}(a)-f^{\prime}(x_0)\right|\\&= \left|f^{\prime\prime}(\xi_1)x_0\right|+ \left|f^{\prime\prime}(\xi_2)(a-x_0)\right|\leq mx_0+m(a-x_0)=ma \end{aligned} ∣f′(0)∣+∣f′(a)∣=∣f′(x0)−f′(0)∣+∣f′(a)−f′(x0)∣=∣f′′(ξ1)x0∣+∣f′′(ξ2)(a−x0)∣≤mx0+m(a−x0)=ma
13.设 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导,且 ∣ f ′ ( x ) ∣ < 1 |f^{\prime}(x)|<1 ∣f′(x)∣<1,又 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),证明:对任意 x 1 , x 2 ∈ [ 0 , 1 ] x_1,x_2\in[0,1] x1,x2∈[0,1],有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|<\frac{1}{2} ∣f(x1)−f(x2)∣<21。
证明
不妨设 0 ≤ x 1 ≤ x 2 ≤ 1 0\leq x_1\leq x_2 \leq 1 0≤x1≤x2≤1,当 x 2 − x 1 ≤ 1 2 x_2 -x_1\leq \frac{1}{2} x2−x1≤21时。由拉格朗日定理知 ∣ f ( x 1 ) − f ( x 2 ) ∣ = ∣ f ′ ( ξ 1 ) ( x 1 − x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|=|f^{\prime}(\xi_1)(x_1-x_2)|<\frac{1}{2} ∣f(x1)−f(x2)∣=∣f′(ξ1)(x1−x2)∣<21;当 x 2 − x 1 > 1 2 x_2-x_1>\frac{1}{2} x2−x1>21时,则 0 ≤ x 1 + ( 1 − x 2 ) = 1 − ( x 2 − x 1 ) < 1 2 0\leq x_1+(1-x_2)=1-(x_2-x_1)<\frac{1}{2} 0≤x1+(1−x2)=1−(x2−x1)<21;又 f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),于是
∣ f ( x 1 ) − f ( x 2 ) ∣ = ∣ f ( x 1 ) − f ( 0 ) − ( f ( x 2 ) − f ( 1 ) ) ∣ ≤ ∣ f ( x 1 ) − f ( 0 ) ∣ + ∣ f ( 1 ) − f ( x 2 ) ∣ = ∣ f ′ ( ξ ) ∣ x 1 + ∣ f ′ ( ξ 2 ) ∣ ∣ 1 − x 2 ∣ < x 1 + ( 1 − x 2 ) < 1 2 \begin{aligned} \left|f(x_1)-f(x_2)\right|&=|f(x_1)-f(0)-(f(x_2)-f(1))|\leq |f(x_1)-f(0)|+|f(1)-f(x_2)|\\&=|f^{\prime}(\xi)|x_1+|f^{\prime}(\xi_2)||1-x_2|
故 x 1 , x 2 ∈ [ 0 , 1 ] x_1,x_2\in[0,1] x1,x2∈[0,1],则 ∣ f ( x 1 ) − f ( x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|<\frac{1}{2} ∣f(x1)−f(x2)∣<21。
14.设 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,且 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上不是线性函数,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使 ∣ f ′ ( ξ ) ∣ > ∣ f ( b ) − f ( a ) b − a ∣ \left|f^{\prime}(\xi)\right|>\left|\frac{f(b)-f(a)}{b-a}\right| ∣f′(ξ)∣>∣∣∣b−af(b)−f(a)∣∣∣。
证明
由题意知 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上不是线性函数,即不是直线,设
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a} (x-a) F(x)=f(x)−f(a)−b−af(b)−f(a)(x−a)
已知 F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,且当 a < x < b a
f ′ ( ξ 1 ) > f ( b ) − f ( a ) b − a f^{\prime}(\xi_1)>\frac{f(b)-f(a)}{b-a} f′(ξ1)>b−af(b)−f(a)
f ′ ( ξ 2 ) < f ( b ) − f ( a ) b − a f^{\prime}(\xi_2)<\frac{f(b)-f(a)}{b-a} f′(ξ2)<b−af(b)−f(a)
因此,当 f ( b ) − f ( a ) b − a ≥ 0 \frac{f(b)-f(a)}{b-a}\geq0 b−af(b)−f(a)≥0时, ∣ f ′ ( ξ 1 ) ∣ > ∣ f ( b ) − f ( a ) b − a ∣ |f^{\prime}(\xi_1)|>\left|\frac{f(b)-f(a)}{b-a}\right| ∣f′(ξ1)∣>∣∣∣b−af(b)−f(a)∣∣∣;
当 f ( b ) − f ( a ) b − a < 0 \frac{f(b)-f(a)}{b-a}<0 b−af(b)−f(a)<0时, ∣ f ′ ( ξ 2 ) ∣ > ∣ f ( b ) − f ( a ) b − a ∣ |f^{\prime}(\xi_2)|>\left|\frac{f(b)-f(a)}{b-a}\right| ∣f′(ξ2)∣>∣∣∣b−af(b)−f(a)∣∣∣。得证
15.设 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上二阶可导, f ′ ( a ) = f ′ ( b ) = 0 f^{\prime}(a)=f^{\prime}(b)=0 f′(a)=f′(b)=0,证明:至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使
∣ f ′ ′ ( ξ ) ∣ ≥ 4 ∣ f ( b ) − f ( a ) ( b − a ) 2 ∣ |f^{\prime\prime}(\xi)|\geq4\left|\frac{f(b)-f(a)}{(b-a)^2}\right| ∣f′′(ξ)∣≥4∣∣∣∣(b−a)2f(b)−f(a)∣∣∣∣
证明
f ( x ) f(x) f(x)在 x = a , x = b x=a,x=b x=a,x=b处分别展成泰勒公式,得
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( ξ 1 ) 2 ! ( x − a ) 2 , a < ξ 1 < x f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime\prime}(\xi_1)}{2!}(x-a)^2,a<\xi_1
将 x = a + b 2 x=\frac{a+b}{2} x=2a+b代入上式,得
f ( a + b 2 ) = f ( a ) + f ′ ( ξ 1 ) 2 ! ( x − a ) 2 , a < ξ 1 < a + b 2 f\left(\frac{a+b}{2}\right)=f(a)+\frac{f^{\prime}(\xi_1)}{2!}(x-a)^2,a<\xi_1<\frac{a+b}{2} f(2a+b)=f(a)+2!f′(ξ1)(x−a)2,a<ξ1<2a+b
f ( x ) = f ( b ) + f ′ ( b ) ( x − b ) + f ′ ′ ( ξ 2 ) 2 ! ( x − b ) 2 , x < ξ 2 < b f(x)=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime\prime}(\xi_2)}{2!}(x-b)^2,x<\xi_2f(x)=f(b)+f′(b)(x−b)+2!f′′(ξ2)(x−b)2,x<ξ2<b
将 x = a + b 2 x=\frac{a+b}{2} x=2a+b代入上式,得
f ( a + b 2 ) = f ( b ) + f ′ ′ ( ξ 2 ) 2 ! ( b − a 2 ) 2 , a + b 2 < ξ 2 < b f\left(\frac{a+b}{2}\right)=f(b)+\frac{f^{\prime\prime}(\xi_2)}{2!}\left(\frac{b-a}{2}\right)^2,\frac{a+b}{2}<\xi_2f(2a+b)=f(b)+2!f′′(ξ2)(2b−a)2,2a+b<ξ2<b
得
0 = f ( b ) − f ( a ) + ( b − a ) 2 8 [ f ′ ′ ( ξ 2 ) − f ′ ′ ( ξ 1 ) ] 0=f(b)-f(a)+\frac{(b-a)^2}{8}\left[f^{\prime\prime}(\xi_2)-f^{\prime\prime}(\xi_1)\right] 0=f(b)−f(a)+8(b−a)2[f′′(ξ2)−f′′(ξ1)]
则有 ∣ f ( b ) − f ( a ) ∣ = ( b − a ) 2 8 ∣ f ′ ′ ( ξ 2 ) − f ′ ′ ( ξ 1 ) ∣ ≤ ( b − a ) 2 8 ( ∣ f ′ ′ ( ξ 2 ) ∣ + ∣ f ′ ′ ( ξ 1 ) ∣ ) \left|f(b)-f(a)\right|=\frac{(b-a)^2}{8}\left|f^{\prime\prime}(\xi_2)-f^{\prime\prime}(\xi_1)\right|\leq\frac{(b-a)^2}{8}(|f^{\prime\prime}(\xi_2)|+|f^{\prime\prime}(\xi_1)|) ∣f(b)−f(a)∣=8(b−a)2∣f′′(ξ2)−f′′(ξ1)∣≤8(b−a)2(∣f′′(ξ2)∣+∣f′′(ξ1)∣)。
设 ∣ f ′ ′ ( ξ ) ∣ = max { ∣ f ′ ′ ( ξ 1 ) ∣ , ∣ f ′ ′ ( ξ 2 ) ∣ } |f^{\prime\prime}(\xi)|=\max\left\{|f^{\prime\prime}(\xi_1)|,|f^{\prime\prime}(\xi_2)|\right\} ∣f′′(ξ)∣=max{∣f′′(ξ1)∣,∣f′′(ξ2)∣},有 ∣ f ( b ) − f ( a ) ∣ ≤ ( b − a ) 2 8 ⋅ 2 ∣ f ′ ′ ( ξ ) ∣ |f(b)-f(a)|\leq\frac{(b-a)^2}{8}\cdot 2|f^{\prime\prime}(\xi)| ∣f(b)−f(a)∣≤8(b−a)2⋅2∣f′′(ξ)∣,即 ∣ f ′ ′ ( ξ ) ≥ 4 f ( b ) − f ( a ) ( b − a ) 2 ∣ \left|f^{\prime\prime}(\xi)\geq4\frac{f(b)-f(a)}{(b-a)^2}\right| ∣∣∣f′′(ξ)≥4(b−a)2f(b)−f(a)∣∣∣。
16.设 a < b < c aa<b<c,函数 f ( x ) f(x) f(x)在 [ a , c ] [a,c] [a,c]上具有二阶导数,试证:存在一点 ξ ∈ ( a , c ) \xi\in(a,c) ξ∈(a,c),使得 f ( a ) ( a − b ) ( a − c ) + f ( b ) ( b − a ) ( b − c ) + f ( c ) ( c − a ) ( c − b ) = 1 2 f ′ ′ ( ξ ) \frac{f(a)}{(a-b)(a-c)}+\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}=\frac{1}{2}f^{\prime\prime}(\xi) (a−b)(a−c)f(a)+(b−a)(b−c)f(b)+(c−a)(c−b)f(c)=21f′′(ξ)。
令 F ( x ) = ( x − b ) ( x − c ) f ( a ) ( a − b ) ( a − c ) + ( x − a ) ( x − c ) f ( b ) ( b − a ) ( b − c ) + ( x − a ) ( x − b ) f ( c ) ( c − a ) ( c − b ) − f ( x ) F(x)=\frac{(x-b)(x-c)f(a)}{(a-b)(a-c)}+\frac{(x-a)(x-c)f(b)}{(b-a)(b-c)}+\frac{(x-a)(x-b)f(c)}{(c-a)(c-b)}-f(x) F(x)=(a−b)(a−c)(x−b)(x−c)f(a)+(b−a)(b−c)(x−a)(x−c)f(b)+(c−a)(c−b)(x−a)(x−b)f(c)−f(x),由题设 F ( x ) F(x) F(x)在 [ a , c ] [a,c] [a,c]上二阶可导,且有 F ( a ) = F ( b ) = F ( c ) = 0 F(a)=F(b)=F(c)=0 F(a)=F(b)=F(c)=0,对 F ( x ) F(x) F(x)在 [ a , b ] , [ b , c ] [a,b],[b,c] [a,b],[b,c]分别应用罗尔定理,必存在 ξ 1 ∈ ( a , b ) , ξ 2 ∈ ( b , c ) \xi_1\in(a,b),\xi_2\in(b,c) ξ1∈(a,b),ξ2∈(b,c),使得
F ′ ( ξ 1 ) = 0 , F ′ ( ξ 2 ) = 0 F^{\prime}(\xi_1)=0,F^{\prime}(\xi_2)=0 F′(ξ1)=0,F′(ξ2)=0
又由于 F ′ ( x ) F^{\prime}(x) F′(x)在 [ ξ 1 , ξ 2 ] [\xi_1,\xi_2] [ξ1,ξ2]上可导,再应用罗尔定理,必存在 ξ = ( ξ 1 , ξ 2 ) ⊂ ( a , c ) \xi=(\xi_1,\xi_2)\subset(a,c) ξ=(ξ1,ξ2)⊂(a,c),使得 F ′ ′ ( ξ ) = 0 F^{\prime\prime}(\xi)=0 F′′(ξ)=0,而
F ′ ′ ( x ) = 2 f ( a ) ( a − b ) ( a − c ) + 2 f ( b ) ( b − a ) ( b − c ) + 2 f ( c ) ( c − a ) ( c − b ) − f ′ ′ ( ξ ) F^{\prime\prime}(x)= \frac{2f(a)}{(a-b)(a-c)}+\frac{2f(b)}{(b-a)(b-c)}+\frac{2f(c)}{(c-a)(c-b)}-f^{\prime\prime}(\xi) F′′(x)=(a−b)(a−c)2f(a)+(b−a)(b−c)2f(b)+(c−a)(c−b)2f(c)−f′′(ξ)
以 ξ \xi ξ代 x x x,即得所证结论。
17.设函数 f ( x ) f(x) f(x)在 [ 1 , 3 ] [1,3] [1,3]上二阶导数连续,试证:至少存在一点 ξ ∈ ( 1 , 3 ) \xi\in(1,3) ξ∈(1,3),使 f ′ ′ ( ξ ) = f ( 1 ) − 2 f ( 2 ) + f ( 3 ) f^{\prime\prime}(\xi)=f(1)-2f(2)+f(3) f′′(ξ)=f(1)−2f(2)+f(3)。
证明
将 f ( x ) f(x) f(x)在 x = 2 x=2 x=2处展成泰勒公式,得
f ( x ) = f ( 2 ) + f ′ ( 2 ) ( x − 2 ) + f ′ ′ ( ξ ) 2 ! ( x − 2 ) 2 f(x)=f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime\prime}(\xi)}{2!}(x-2)^2 f(x)=f(2)+f′(2)(x−2)+2!f′′(ξ)(x−2)2
f ( 1 ) = f ( 2 ) + f ′ ( 2 ) ( − 1 ) + f ′ ′ ( ξ 1 ) 2 ! ( − 1 ) 2 , 1 < ξ 1 < 2 f(1)=f(2)+f^{\prime}(2)(-1)+ \frac{f^{\prime\prime}(\xi_1)}{2!}(-1)^2,1<\xi_1<2 f(1)=f(2)+f′(2)(−1)+2!f′′(ξ1)(−1)2,1<ξ1<2
f ( 3 ) = f ( 2 ) + f ′ ( 2 ) + f ′ ′ ( ξ 2 ) 2 ! , 2 < ξ 2 < 3 f(3)=f(2)+f^{\prime}(2)+\frac{f^{\prime\prime}(\xi_2)}{2!},2<\xi_2<3 f(3)=f(2)+f′(2)+2!f′′(ξ2),2<ξ2<3
f ( 1 ) + f ( 3 ) = 2 f ( 2 ) + 1 2 [ f ′ ′ ( ξ 1 ) + f ′ ′ ( ξ 2 ) ] f(1)+f(3)=2f(2)+\frac{1}{2}\left[f^{\prime\prime}(\xi_1)+f^{\prime\prime}(\xi_2)\right] f(1)+f(3)=2f(2)+21[f′′(ξ1)+f′′(ξ2)],由介值定理, ∃ ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( 1 , 3 ) \exists\,\xi\in(\xi_1,\xi_2)\subset(1,3) ∃ξ∈(ξ1,ξ2)⊂(1,3),使 f ′ ′ ( ξ ) = 1 2 [ f ′ ′ ( ξ 1 ) + f ′ ′ ( ξ 2 ) ] f^{\prime\prime}(\xi)=\frac{1}{2}\left[f^{\prime\prime}(\xi_1)+f^{\prime\prime}(\xi_2)\right] f′′(ξ)=21[f′′(ξ1)+f′′(ξ2)],有 f ′ ′ ( ξ ) = f ( 1 ) + f ( 3 ) − 2 f ( 2 ) f^{\prime\prime}(\xi)=f(1)+f(3)-2f(2) f′′(ξ)=f(1)+f(3)−2f(2)。
18.设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内具有二阶导数且存在相等的最大值, f ( a ) = g ( a ) f(a)=g(a) f(a)=g(a), f ( b ) = g ( b ) f(b)=g(b) f(b)=g(b)。证明:存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使得 f ′ ′ ( ξ ) = g ′ ′ ( ξ ) f^{\prime\prime}(\xi)=g^{\prime\prime}(\xi) f′′(ξ)=g′′(ξ)。
证明
设 φ ( x ) = f ( x ) − g ( x ) \varphi(x)=f(x)-g(x) φ(x)=f(x)−g(x),由题设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)存在相等的最大值,设 x 1 ∈ ( a , b ) , x 2 ∈ ( a , b ) x_1\in(a,b),x_2\in(a,b) x1∈(a,b),x2∈(a,b)使 f ( x 1 ) = max [ a , b ] f ( x ) = g ( x 2 ) = max [ a , b ] g ( x ) f(x_1)=\max\limits_{[a,b]}f(x)=g(x_2)=\max\limits_{[a,b]}g(x) f(x1)=[a,b]maxf(x)=g(x2)=[a,b]maxg(x)。
若 x 1 = x 2 x_1=x_2 x1=x2,即 f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)在同一点取得最大值,此时,取 η = x 1 \eta=x_1 η=x1,有 f ( η ) = g ( η ) f(\eta)=g(\eta) f(η)=g(η);
若 x 1 ≠ x 2 x_1\neq x_2 x1=x2,不妨设 x 1 < x 2 x_1
由题设 f ( a ) = g ( a ) f(a)=g(a) f(a)=g(a), f ( b ) = g ( b ) f(b)=g(b) f(b)=g(b),则 φ ( a ) = 0 = φ ( b ) \varphi(a)=0=\varphi(b) φ(a)=0=φ(b),结合 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0,且 φ ( x ) \varphi(x) φ(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内二阶可导,应用两次罗尔定理知:
存在 ξ 1 ∈ ( a , η ) , ξ 2 ∈ ( η , b ) \xi_1\in(a,\eta),\xi_2\in(\eta,b) ξ1∈(a,η),ξ2∈(η,b),使得 φ ′ ( ξ 1 ) = 0 \varphi^{\prime}(\xi_1)=0 φ′(ξ1)=0, φ ′ ( ξ 2 ) = 0 \varphi^{\prime}(\xi_2)=0 φ′(ξ2)=0。
在 [ ξ 1 , ξ 2 ] [\xi_1,\xi_2] [ξ1,ξ2]再用罗尔定理,则存在 ξ ∈ ( ξ 1 , ξ 2 ) \xi\in(\xi_1,\xi_2) ξ∈(ξ1,ξ2),使 φ ′ ′ ( ξ ) = 0 \varphi^{\prime\prime}(\xi)=0 φ′′(ξ)=0。即 f ′ ′ ( ξ ) = g ′ ′ ( ξ ) f^{\prime\prime}(\xi)=g^{\prime\prime}(\xi) f′′(ξ)=g′′(ξ)。
19.设 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上有二阶连续导数,且 f ( a ) = f ( b ) = 0 f(a)=f(b)=0 f(a)=f(b)=0, M = max [ a , b ] ∣ f ′ ′ ( x ) ∣ M=\max\limits_{[a,b]}\left|f^{\prime\prime}(x)\right| M=[a,b]