Tensorflow: You must feed a value for placeholder tensor 'inputs/y_input' with dtype float and shape

Tensorflow: You must feed a value for placeholder tensor 'inputs/y_input' with dtype float and shape

从字面理解是:你必须给占位符y_input喂入一个向量值即赋值,看下面代码:

    writer = tf.summary.FileWriter("logs/",sess.graph)
    #损失函数
    tf.summary.scalar('loss',loss)
    #合并图表信息:自动管理summary
    merged = tf.summary.merge_all()
    #将图表写到文件中
    writer = tf.summary.FileWriter("logs/",sess.graph)
    sess.run(tf.global_variables_initializer())
    for step in range(1000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if step % 50 == 0:
            result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
            writer.add_summary(result,step)

这里只是想损失函数loss通过tensorboard显示出来而已,并且字典表也正常赋值了:

result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
一切都很正常,想来想去感觉这个函数应该可以采用其他方式替换:
merged = tf.summary.merge_all()

这是tensorflow提供的合并所有summary信息的api,但是我只是想合并损失函数loss的summary,好吧,那我就单独来设置它,修改代码如下:

    #损失函数,注意这里我用一个向量保存了loss的summary信息
    scalar_loss = tf.summary.scalar('loss',loss)
    #合并图表信息:自动合并所有summary
    merged = tf.summary.merge_all()
    #将图表写到文件中
    writer = tf.summary.FileWriter("logs/",sess.graph)
    sess.run(tf.global_variables_initializer())
    for step in range(1000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if step % 50 == 0:
            result_loss = sess.run(scalar_loss,feed_dict={xs:x_data,ys:y_data})#这里修改成单独生成result_loss
          writer.add_summary(result_loss,step)
运行测试,一切终于正常了,不管重复运行多少次都可以生成想要的报告。



你可能感兴趣的:(大数据/机器学习/人工智能)