Leetcode-329: Longest Increasing Path in a Matrix


Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]

Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]

Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.


给了一个矩阵,求这个矩阵中的最长递增路径。(路径不允许走对角线。)


思路:这种求最长路径的题第一想到的都应该是深度优先搜索(DFS),可以用一个同样大小的矩阵标记以各点为起点的最长递增路径,所以也有动态规划的思想在里面。如果matrix[i][j]周围的数都比ta小的话,那么以matrix[i][j]为起点的最长递增路径长度为1;否则找到matrix[i][j]周围长度最长的那个点(ii, jj),以matrix[ii][jj]为起点的最长递增路径长度加1即为matrix[i][j]的路径长度。


class Solution {
    private int[][] longestPath;
    private int[][] direct = {{-1, 0}, {0, -1}, {1, 0}, {0, 1}};
    
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0)
            return 0;
        longestPath = new int[matrix.length][matrix[0].length];
        
        int max = 0;
        for (int i = 0; i < matrix.length; ++i) {
            for (int j = 0; j < matrix[0].length; ++j) {
                max = Math.max(max, dfs(matrix, i, j));
            }
        }
        return max;
    }
    
    private int dfs(int[][] matrix, int i, int j) {
        if (longestPath[i][j] != 0)
            return longestPath[i][j];
        
        int max = 1;
        for (int[] d : direct) {
            int ii = i + d[0], jj = j + d[1];
            if (!(ii < 0 || jj < 0 || ii >= matrix.length || jj >= matrix[0].length) && matrix[ii][jj] > matrix[i][j])
                max = Math.max(max, 1 + dfs(matrix, ii, jj));
        }
        longestPath[i][j] = max;
        return max;
    }
}


你可能感兴趣的:(leetcode)