零知识证明介绍

【阿里巴巴的零知识证明】原文

战争中你被俘了,敌人拷问你情报。你是这么想的:如果我把情报都告诉他们,他们就会认为我没有价值了,就会杀了我省粮食,但如果我死活不说,他们也会认为我没有价值而杀了我。怎样才能做到既让他们确信我知道情报,但又一丁点情报也不泄露呢?

这的确是一个令人纠结的问题,但阿里巴巴想了一个好办法,当强盗向他拷问打开山洞石门的咒语时,他对强盗说:“你们离我一箭之地,用弓箭指着我,你们举起右手我就念咒语打开石门,举起左手我就念咒语关上石门,如果我做不到或逃跑,你们就用弓箭射死我。”

强盗们当然会同意,因为这个方案不仅对他们没有任何损失,而且还能帮助他们搞清楚阿里巴巴到底是否知道咒语这个问题。阿里巴巴也没损失,因为处于一箭之地的强盗听不到他念的咒语,不必担心泄露了秘密,而且他确信自己的咒语有效,也不会发生被射死的杯具。

强盗举起了右手,只见阿里巴巴的嘴动了几下,石门果真打开了,强盗举起了左手,阿里巴巴的嘴动了几下后石门又关上了。强盗还是有点不信,说不准这是巧合呢,他们不断地换着节奏举右手举左手,石门跟着他们的节奏开开关关,最后强盗们想,如果还认为这只是巧合,自己未免是个傻瓜,那还是相信了阿里巴巴吧。

“零知识证明”说的是示证者向验证者表明他知道某种秘密,不仅能使验证者完全确信他的确知道这个秘密,同时还保证一丁点秘密也不泄露给验证者。阿里巴巴的这个方案,就是认证理论“零知识证明”的一个重要协议。

除了被俘后如何靠情报保命这个问题,零知识证明在社会领域中还有着很多应用场合。例如你证明了一个世界级的数学难题,但在发表出来之前,总是要找个泰斗级的数学家审稿吧,于是你将证明过程发给了他,他看懂后却动了歪心思,他把你的稿子压住,把你的证明用自己的名义发表,他名利双收,你郁闷至死,你去告他也没用,因为学术界更相信的是这位泰斗,而不是你这个无名之辈。

这并不是天方夜谭,而是学术界常见的难题,前些年有个博士生告他的泰斗级导师剽窃他的成果,但除了令师生关系恶化外没有任何效果,最后他使出了撒手锏,称他在给导师审阅的论文的关键公式中,故意标错了一个下标,而这会导致整个推导失败。学术委员会一查果真如此,但还是有倾向于泰斗的声音,有人说那是泰斗的笔误,只不过让你发现了而矣,并不能证明那公式就是你推导出来的。

这个博士生故意标错下标,不能说他没有心眼,但他没有把“零知识证明”理论用好,以致于落到这种地步。“零知识证明”早在1986年就被A.Fiat和A.Shamir用数学的方法给出了解决方案,并在同年申请了美国专利,但由于该理论可能被用于军事领域,专利局被军方密令搁置,6个月后,军方命令:“该申请发表后会有害于国家安全......所有美国人的研究未经许可而泄露将会被判刑罚款”。看来军方认为作者肯定是美国人了,但作者实际上是在美国申请专利的以色列人,研究也是在以色列的大学里做的,军方这个命令摆了个大乌龙,虽然两天后撤消了,但已经成为了学术界的笑柄。

这个笑柄也说明了一个问题,即“零知识证明”非常重要。基于数学的推理虽然非常复杂,但思路却很简单,上述的阿里巴巴方案就是其中之一。其它的一些方案,也都是像这样遵循着分割和选择(Cut and Chose)协议的

例如图论中有个哈米尔顿回路(Hamiltonian Cyclic)问题,说的是多个顶点的全连通图,若有一条通路通过了所有顶点,且每个顶点只通过一次,那这就是哈米尔顿回路。如果顶点较多的话,即使用计算机穷举计算很难找出这条回路,因为通路的可能性真在是太多了。

如果松鼠会贴了一张全连通图(命名为A图)悬赏哈米尔顿回路,而且任命我(奥卡姆剃刀)作为评审官,你幸运的找到了一条,那该怎么办呢,将结果直接发给我吗?千万不要,因为保不齐我会将你的成果让给了我的亲信。那你该怎么办呢?应该这么办:

1、你将A图的顶点搞乱了,并生成一张新图,只是顶点的位置变了,而新图顶点之间的连线关系与A图是完全一致的。这时,新图中每个顶点与A图中每个顶点的对应关系你是清楚的,而且新图中的哈米尔顿回路你也是知道的。

2、你将这张新图发给我,没错,就是仅仅一张新图,上面并没有画着你发现的牛B回路。

3、我收到后,对你提出两个问题中的一个:一是证明新图就是从A图变形过来的,所有顶点和连线的关系完全一致,二是画出新图中的哈米尔顿回路。

4、如果你真的找到了A图的哈米尔顿回路,这两个问题当然都能轻松回答。需要注意的是:你只需要回答第3步的其中一个问题,千万不要两个问题一并回答,否则我就知道你关于A图的哈米尔顿回路了,你就SB了。

5、我还是不相信你,因为有可能你只是将A图变了形,却根本不知道A图的哈米尔顿回路,而我在第3步时恰好要求你证明新图就是从A图变形过来的,你当然能证明。或者有可能你找了个你知道哈米尔顿回路的图,但这张图跟A图一点关系都没有,而我在第3步恰好要求你画出这张图的哈米尔顿回路。

6、我要求你从第1步开始重复这个验证过程,随着次数的增加,第5步那种巧合的可能性就越来越低,如果你多次能回答对第3步中的问题,那我还不相信你已经找到了A图的哈米尔顿回路,那我就是一个傻瓜。

7、为了表明我不是傻瓜,我在松鼠会群博里宣布你找到了A图的哈米尔顿回路,而这时我并没有看到你所画的A图的哈米尔顿回路。

回到你证明了世界级的数学难题的问题,你可以用这种分割和选择协议来进行零知识证明,来保护你的权利。你公开声称你解决了这个数学难题后,验证者会给你出一个其它的题,而能做出这道题的前提条件是已经解决了那个数学难题,否则的话无解,而且这个条件是学术界所公认的,这个题就是所谓的平行问题。不出所料,你靠着已经解开数学难题的基础把这个平行问题做出来了,但验证者还是不信,他又出了一道平行问题,你又做出来了,多次较量后,验证者就确信了你已经解决了那个数学难题,虽然他并没有看到具体的解法。

大家已经看出来了,零知识证明需要示证者和验证者的密切配合,但如果你只是一个数学界的无名之辈,即使你宣称你解决了数学难题,也不会有人跟你配合着玩零知识证明,那你该怎么办呢?

我告诉你一个可以在法庭上都能当作有效证据的招数,你将证明打印好,选择一个最可靠最权威的邮政公司,把它寄给自己,当你收到这个扣着邮戳的包裹后,不要打开,把它放好,然后就可以把证明寄给数学泰斗。如果他用自己的名义发表了,不必着急,等他依靠其影响力把这个证明炒热后再出手,你上法庭控告他,他当然不承认,在法庭上你将那个没开封的包裹拿出来,上面清清楚楚地盖着时间戳,这就证明了你包裹里的证明是发生在那个时间戳之前的,加上之后的你邮给泰斗论文的邮件存根,和泰斗以自己名义发表论文的时间,三者就构成了一个完整的证据链,泰斗灰头土脸名声扫地,而你大获全胜名利双收。

【零知识证明一般的过程】

  • 假设有两方人,甲方是证明者,乙方是验证者。他们在一个工作环境内有相同的一组函数和一组数值。证明开始:
    1.甲方先发送满足条件的随机值给乙方,这个称为承诺
    2.乙方发送满足条件的随机值给甲方,这个称为挑战
    3.甲方执行一个不让乙方知道的计算,并把计算结果给乙方,这个称为响应
    4.乙方对响应进行验证,验证失败就退出,验证成功回到1,然后继续顺序执行n次
    如果每一次乙方验证都是成功的,那么乙方就相信了和甲方之间的共识。在整个过程中没有透露任何相关秘密信息。

【举例】

  • A要向B证明自己拥有某个房间的钥匙,假设该房间只能用钥匙打开锁,而其他任何方法都打不开。这时有2个方法:
    ①A把钥匙出示给B,B用这把钥匙打开该房间的锁,从而证明A拥有该房间的正确的钥匙。
    ②B确定该房间内有某一物体,A用自己拥有的钥匙打开该房间的门,然后把物体拿出来出示给B,从而证明自己确实拥有该房间的钥匙。
    后面的②方法属于零知识证明。好处在于在整个证明的过程中,B始终不能看到钥匙的样子,从而避免了钥匙的泄露。
  • A拥有B的公钥,A没有见过B,而B见过A的照片,偶然一天2人见面了,B认出了A,但A不能确定面前的人是否是B,这时B要向A证明自己是B,也有2个方法。
    ①B把自己的私钥给A,A用这个私钥对某个数据加密,然后用B的公钥解密,如果正确,则证明对方确实是B。
    ②A给出一个随机值,B用自己的私钥对其加密,然后把加密后的数据交给A,A用B的公钥解密,如果能够得到原来的随机值,则证明对方是B。
    后面的方法属于零知识证明。
  • 有一个缺口环形的长廊[1] ,出口和入口距离非常近(在目距之内),但走廊中间某处有一道只能用钥匙打开的门,A要向B证明自己拥有该门的钥匙。采用零知识证明,则B看着A从入口进入走廊,然后又从出口走出走廊,这时B没有得到任何关于这个钥匙的信息,但是完全可以证明A拥有钥匙。
  • “保护私房钱”:
    男方有一笔私房钱放在一个保险柜里,女方想让男方交出来,但是男方不想让女方知道保险柜密码,那么怎么在不让女方知道保险柜密码的同时取出私房钱。于是两边约定,男方到保险柜前去取钱,女方必须远离他10米,然后女方说取,男方用密码打开保险柜,取出钱来,女方不知道密码但是还是拿到了保险柜里的男方的私房钱,但是也有可能男方偷偷的是从自己钱包拿出来的而不是保险柜里的钱,于是这个过程反复,女方不停提出数额,男方一次次用密码打开取钱,关闭保险柜的动作,那么女方也就相信了这些钱都是保险柜里取出来的私房钱,男方确实有保险柜的密码,使用这个保险柜来藏钱。

零知识证明的优点:

  1. 在使用零知识证明的时候,不降低安全性。
  2. 零知识证明工作高效,计算过程量小,双方交换信息少。
  3. 既安全、又有良好的隐私、又减少计算量。

零知识证明的三条性质:

  • 完备性。如果证明方和验证方都是诚实的,并遵循证明过程的每一步,进行正确的计算,那么这个证明一定是成功的,验证方一定能够接受证明方。
  • 合理性。没有人能够假冒证明方,使这个证明成功。
  • 零知识性。证明过程执行完之后,验证方只获得了“证明方拥有这个知识”这条信息,而没有获得关于这个知识本身的任何一点信息。

https://www.jianshu.com/p/b6a14c472cc1?from=timeline  证明介绍

https://github.com/jstoxrocky/zksnarks_example

https://github.com/JacobEberhardt/ZoKrates   

https://github.com/scipr-lab/libsnark         a C++ library for zkSNARK proofs

https://medium.com/@argongroup/on-zero-knowledge-proofs-in-blockchains-14c48cfd1dd1         零知识介绍

https://zhuanlan.zhihu.com/p/24440530      零知识在zcash中使用对应视频:https://www.youtube.com/watch?v=7yMRibtj2ww

你可能感兴趣的:(Blockchain,technology)