- SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比
不二人生
#数据集成工具SeaTunnel
文章目录SeaTunnel与DataX、Sqoop、Flume、FlinkCDC对比同类产品横向对比2.1、高可用、健壮的容错机制2.2、部署难度和运行模式2.3、支持的数据源丰富度2.4、内存资源占用2.5、数据库连接占用2.6、自动建表2.7、整库同步2.8、断点续传2.9、多引擎支持2.10、数据转换算子2.11、性能2.12、离线同步2.13、增量同步&实时同步2.14、CDC同步2.15
- flume系列之:flume落cos
快乐骑行^_^
日常分享专栏flume系列
flume系列之:flume落cos一、参考文章二、安装cosjar包三、添加hadoop-cos的相关配置四、flume环境添加hadoop类路径五、使用cos路径六、启动/重启flume一、参考文章Kafka数据通过Flume存储到HDFS或COSflumetocos使用指南二、安装cosjar包将对应hadoop版本的hadoop-cos的jar包(hadoop-cos-{hadoop.ve
- Flume 简介01 作用 核心概念 事务机制 安装 配置入门实战
湖中屋
Flumeflume
Flume1.业务系统为什么会产生用户行为日志,怎么产生的用户行文日志:每一次访问的行为(访问、搜索)产生的日志记录用户行为日志的目的:1.商家会精准的给你呈现符合你的个人界面2.商家会给你个人添加用户标签,更加精准的分析埋点等2.flume用来做什么的(采集传输数据的,分布式的,可靠的)ApacheFlume是一个从可以收集例如日志,事件等数据资源,并将这些数量庞大的数据从各项数据资源中集中起来
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- kafka直接对接nginx
Lu_Xiao_Yue
nginxkafka
很多时候我们要对nginx产生的日志进行分析都是通过flume监控nginx产生的日志,通过flume把日志文件发送该kafka,flume作为生产者,但是这种方式的缺点就是可能效率会比较慢,除此之外还可以使用kafka直接对接nginx,nginx作为生产者,把log日志直接对接到kafka的某些分区中,这种方法的效率比较高,但是缺点就是可能会出现数据丢失,可以通过把nginx的日志进行一份给k
- 大数据新视界 --大数据大厂之大数据实战指南:Apache Flume 数据采集的配置与优化秘籍
青云交
大数据新视界数据库ApacheFlume数据采集安装部署配置优化高级功能大数据工具集成
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 解决flume在抽取不断产生的日志文件时,hdfs上出现很多小文件的问题
lzhlizihang
flumehdfs大数据
问题在使用flume时,需要编写conf文件,然后执行,明明sinks已经指定了roll的三个参数:a1.sinks.k1.hdfs.rollInterval=0(根据写入时间来切割)a1.sinks.k1.hdfs.rollSize=0(根据写入的文件大小来切割)a1.sinks.k1.hdfs.rollCount=0(根据Event数量来切割)其中0代表不根据其属性来切割文件但是hdfs上还会
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- 【大数据Big DATA】大数据解决方案,提供完整的大数据采集,大数据存储,大数据处理,具体业务应用解决方案
_晓夏_
JAVA大数据大数据解决方案大数据BIGDATA大数据采集大数据存储大数据处理大数据分析
大数据解决方案是指利用大数据技术,结合企业实际业务需求,为企业提供数据采集、存储、处理、分析和报告等一站式服务,以帮助企业更好地利用大数据提高运营效率、优化决策制定。以下是一些常见的大数据解决方案:一、数据采集数据采集是大数据解决方案的起点,涉及从各种数据源中抓取和收集数据。常见的大数据采集工具包括Flume、Scribd等,这些工具可以帮助企业快速、高效地采集各类数据。二、数据存储大数据存储解决
- 大数据技术之Flume 企业开发案例——自定义 Interceptor(8)
大数据深度洞察
Flumeflume大数据
目录自定义Interceptor1)案例需求2)需求分析3)实现步骤创建一个Maven项目,并引入以下依赖。定义CustomInterceptor类并实现Interceptor接口。编辑flume配置文件分别在hadoop12,hadoop13,hadoop14上启动flume进程,注意先后顺序。在hadoop12使用netcat向localhost:44444发送字母和数字。观察hadoop13
- 大数据基础之Flume——Flume基础及Flume agent配置以及自定义拦截器
Clozzz
Flume大数据flumehadoop
Flume简介Flume用于将多种来源的日志以流的方式传输至Hadoop或者其他目的地 -一种可靠、可用的高效分布式数据收集服务Flume拥有基于数据流上的简单灵活架构,支持容错、故障转移与恢复由Cloudera2009年捐赠给Apache,现为Apache顶级项目Flume架构Client:客户端,数据产生的地方,如Web服务器Event:事件,指通过Agent传输的单个数据包,如日志数据通常对
- Flume介绍及调优
桓桓桓桓
分布式大数据日志搜集
一、概述Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。当前Flume有两个版本Flume0.9X版本的统称Flume-og,Flume1.X版本的统称Flume-ng。由于Flume-ng经过重大重构,与Flu
- 大数据技术之Flume 数据流监控——Ganglia 的安装与部署(11)
大数据深度洞察
Flume大数据flume
目录Flume数据流监控Ganglia的安装与部署Ganglia组件介绍1)安装Ganglia2)在hadoop12修改配置文件/etc/httpd/conf.d/ganglia.conf3)在hadoop12修改配置文件/etc/ganglia/gmetad.conf4)在hadoop12,hadoop13,hadoop14修改配置文件/etc/ganglia/gmond.conf5)在hado
- 大数据技术之Flume
okbin1991
大数据flumejavahadoop开发语言
第1章Flume概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume基础架构Flume组成架构如下图所示。1.2.1AgentAgent是一个JVM进程,它以事件的形式将数据从源头送至目的。Agent主要有3个部分组成,Source、Channel、Sink。1.2.2Sourc
- 错误: 找不到或无法加载主类 org.apache.flume.tools.GetJavaProperty
小波2200013045
flume大数据
[root@master~]#flume-ngversion[root@master~]#cd/usr/local/flume/bin[root@masterbin]#vimflume-ng配置文件中加入红框代码#determineHBASEjava.library.pathandusethatforflumelocalHBASE_CLASSPATH=""localHBASE_JAVA_LIBRA
- flume系列之:批量并行启动、停止、重启flume agent组
快乐骑行^_^
flumeflume系列批量并行启动停止重启flumeagent组
Flume系列之:批量并行启动、停止、重启flumeagent组批量启动flumeagent组批量启动flumeagent组importsubprocessimportthreadingdefrun_command(command):process=subprocess.Popen(command,shell=True)process
- 大数据技术之Flume 企业开发案例——负载均衡和故障转移(6)
大数据深度洞察
Flume大数据flume负载均衡
目录负载均衡和故障转移1)案例需求2)需求分析3)实现步骤负载均衡和故障转移1)案例需求使用Flume1监控一个端口,其sink组中的sink分别对接Flume2和Flume3,采用FailoverSinkProcessor,实现故障转移的功能。2)需求分析故障转移案例3)实现步骤准备工作在/opt/module/flume/job目录下创建group2文件夹[lzl@hadoop12job]$c
- 大数据技术之Flume事务及内部原理(3)
大数据深度洞察
Flumeflume大数据
目录FlumeAgent架构概述FlumeAgent内部工作流程FlumeAgent的配置FlumeAgent内部重要组件ChannelSelectorSinkProcessorApacheFlume是一个分布式的、可靠的、可用的服务,用于有效地收集、聚合和移动大量日志数据。它具有简单灵活的架构,基于流式数据流动模型。Flume主要由三个核心组件组成:Source(源)、Channel(通道)和S
- 从零到一建设数据中台 - 关键技术汇总
我码玄黄
数据中台数据挖掘数据分析大数据
一、数据中台关键技术汇总语言框架:Java、Maven、SpringBoot数据分布式采集:Flume、Sqoop、kettle数据分布式存储:HadoopHDFS离线批处理计算:MapReduce、Spark、Flink实时流式计算:Storm/SparkStreaming、Flink批处理消息队列:Kafka查询分析:Hbase、Hive、ClickHouse、Presto搜索引擎:Elast
- 基于Hadoop平台的电信客服数据的处理与分析④项目实现:任务16:数据采集/消费/存储
我非夏日
大数据开发---电信项目大数据大数据技术开发hadoop
任务描述“数据生产”的程序启动后,会持续向callLog.csv文件中写入模拟的通话记录。接下来,我们需要将这些实时的数据通过Flume采集到Kafka集群中,然后提供给HBase消费。Flume:是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据
- flume集成kafka
weixin_34112181
大数据pythonjava
2019独角兽企业重金招聘Python工程师标准>>>1.kafka的配置参照https://my.oschina.net/u/1591525/blog/22519102.flum配置在flume的conf目录下新建kafka.propertiesagent.sources=s1agent.channels=c1agent.sinks=k1agent.sources.s1.type=execage
- Hadoop生态圈
陈超Terry的技术屋
生态圈1.HBase的数据存储在HDFS里2.MapReduce可以计算HBase里的数据,也可以计算HDFS里的数据3.Hive是数据分析数据引擎,也是MapReduce模型,支持SQL4.Pig也是一个数据分析引擎,不支持SQL,有自己的PigLatin数据5.Sqoop是数据采集工具,针对关系数据库6.Flume是针对文件等数据的采集7.Hadoop的HA通过Zookeeper来实现8.HU
- Flume总结
我是嘻哈大哥
1.概述2.角色(source、Channel、sink、event)3.使用(1)监控端口(2)实时读取本地文件到HDFS(3)实时读取目录文件到HDFS(4)Flume与Flume之间数据传递:单Flume多Channel、Sink(5)Flume与Flume之间数据传递,多Flume汇总数据到单Flume
- 离线数仓(一)【数仓概念、需求架构】
让线程再跑一会
离线数仓大数据
前言今天开始学习数仓的内容,之前花费一年半的时间已经学完了Hadoop、Hive、Zookeeper、Spark、HBase、Flume、Sqoop、Kafka、Flink等基础组件。把学过的内容用到实践这是最重要的,相信会有很大的收获。1、数据仓库概念1.1、概念数据仓库(DataWarehouse),是为企业制定决策,提供数据支持的。可以帮助企业,改进业务流程、提高产品质量等。(数据仓库的目的
- 大数据技术之 Flume
骚戴
大数据大数据Flume
第1章Flume概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。骚戴理解:注意这里是日志采集,也就是只能采集文本类型的数据!Flume的作用的特点就是可以实时采集!1.2Flume基础架构Flume组成架构如下图所示1.2.1AgentAgent是一个JVM进程,它以事件的形式将数据从源头送
- FLUME-NG 使用总结
.道不虚行
hadoopflume大数据数据收集
FLUME-NG使用总结1、Flume-NG概述2、Flume-NG架构设计要点3、FlowPipeline4、FlumeNG三个组件概要4.1、FlumeSource4.2、FlumeChannel4.3、FlumeSink5、入门应用5.1、flume-ng通过网络端口采集数据5.2、flume-ng通过Exectail采集数据5.3、可能遇到的问题1、Flume-NG概述Flume-NG是一
- 【大数据】Flume-1.9.0安装➕入门案例
欧叶冲冲冲
flume大数据flume学习分布式
目录前言一、Flume概述Flume基础架构二、Flume-1.9.0安装➕入门案例1.下载1.9.0解压2.监控端口数据官方案例3.实时读取本地文件(hive.log)到HDFS案例4.实时读取目录文件到HDFS案例5.实时监控目录下多个追加文件总结前言大数据解决的无非是海量数据的采集、存储、计算,Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。
- 大数据入门--Flume(一)安装教程与案例
许中宝
大数据flume大数据
Flume(一)安装教程与案例安装教程案例监控端口数据官方案例(netcat-logger)实时监控单个追加文件(exec-hdfs)进阶版存在的问题实时监控目录下多个新文件(taildir)实时监控目录下多个新文件(spooldir-hdfs)安装教程下载安装apache-flume-1.9.0-bin.tar.gz解压配置JAVA_HOMEviconf/flume-env.sh.templat
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,